首页> 外文会议>MFPT Meeting >PHM Applications Session MFPT - V.62 Lessons Learned-(PPT)
【24h】

PHM Applications Session MFPT - V.62 Lessons Learned-(PPT)

机译:PHM应用程序会话MFPT - V.62经验教训 - (PPT)

获取原文

摘要

1. Although reliability and maintainability assume that there are only two cases, broke and not broke, the truth of the world is that we do not and never have lived in a bipolar world. There are shades of working systems. The gray zone includes things that work sometimes, usually only when the mechanic is not looking. 2. Prognosis is the art of the foreseeable future. However the future is inferred with limited insight into equipment usage and environment. Both are subject to wide variations in uncertainty. 3. Wear (degradation) is a measurable phenomenon that can be modeled and simulated. The ability to accomplish this is essential to V&V. And as with most phenomenon, its properties can be described in virtual to real worlds. 4. Component wear contributes to system failure. This is the science of reliability. 5. Component measurement does not always detect maintenance realities. That is, components can be removed early and system failure can occur before any single component fails completely. 6. Uncertainty is compensated for by excessive inspection, sparing and MMH's for troubleshooting and incorrect maintenance, i.e. CND's, RETOK's, BCS's etc. 7. To understand prognostics there must be an understanding of the physics of failure. 8. In the computationally dependent world we live in, there must also be an understanding of the phenomena of software failure. Although in the literal sense, software does not fail, there are occasions where programs do not produce the results that were expected. 9. Because of the complexity and interrelated nature of the systems under consideration, prognostics must be conscious of the nature and issues involved in integration. 10. Prognostics must combine systems engineering processes with the appropriate tool sets and data. The field of prognostics will require additional tools and a shifting of paradigms from component and bipolar computation to system performance and gray scale capabilities. 11. This leads to the development of degradation tools that consider wear and project life remaining. Instead of FMEA and FMECA, Degradation Mode Effects Analysis and Degradation Mode Effect Criticality Analysis tools will be needed to start and maintain the systems engineering process to sustain prognostics.
机译:1.虽然可靠性和可维护性假设只有两种情况,但破裂并没有破裂,但世界的真相是我们没有,永远不会在双极世界中生活。有一个工作系统的色调。灰色区域包括有时工作的东西,通常只有在机械师不看时才。 2.预后是可预见的未来的艺术。然而,未来是通过有限的深入了解设备使用和环境。两者都受到不确定性的广泛变化。 3.磨损(劣化)是可以进行建模和模拟的可测量现象。实现这一点的能力对于v&v来说至关重要。与大多数现象一样,它的性质可以在虚拟到现实世界中描述。 4.组件磨损有助于系统故障。这是可靠性的科学。 5.组件测量并不总是检测维护现实。也就是说,可以早期删除组件,并且在任何单个组件完全发生故障之前都可能发生系统故障。 6.通过过度检查,保留和MMH来弥补不确定性,用于故障排除和不正确的维护,即CND,Retok,BCS等。7.了解预后,必须了解失败的物理。 8.在我们生活的计算依赖世界中,还必须了解软件失败的现象。虽然在字面意义上,软件不会失败,但有些场合程序不会产生预期的结果。 9.由于所考虑的系统的复杂性和相互关联性质,预后必须意识到整合所涉及的性质和问题。 10.预测必须将系统工程流程与适当的工具集和数据组合。预测领域将需要额外的工具和从组件和双极计算的范例转换到系统性能和灰度能力。 11.这导致发展剩余磨损和项目寿命的退化工具。为了开始和维持系统工程流程,将需要进行分析工具,而不是FMEA和FMECA,降级模式效应分析和降解模式效应累积分析工具以维持预后性。

著录项

  • 来源
    《MFPT Meeting》|2008年||共41页
  • 会议地点
  • 作者

    J. B. Schroeder;

  • 作者单位
  • 会议组织
  • 原文格式 PDF
  • 正文语种
  • 中图分类 TH17-53;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号