首页> 外文会议>International Association of Theoretical and Applied Limnology >The dynamics of phosphorus retention during an eight-year P-addition in a Neotropical headwater stream
【24h】

The dynamics of phosphorus retention during an eight-year P-addition in a Neotropical headwater stream

机译:八年左侧磷潴留期间磷保留的动态

获取原文

摘要

Understanding the capacity of stream ecosystems to retain nu-trients through physical-chemical processes and biotic assimilation has been a central goal of stream ecologists for decades. Currently, most of our understanding of nutrient saturation is based on short-term (<1 day) nutrient addition experiments, while predicting total stream ecosystem response to long-term anthropogenic nutrient loading requires considering the stream's capacity to remove nutrients over extended periods. Dissolved phosphorus (P) retention results from a combination of biotic and abiotic mechanisms, which could follow different trajectories through time. Short-term biotic P uptake by algae and heterotrophic microbes typically involves direct assimilation from the water column and is saturated at low background soluble reactive phosphorus (SRP) levels (MULHOLLAND et al. 1990). However, during long-term P-loading, the biotic community could also respond by increasing biomass (PETERSON et al. 1985, SLAVIK et al. 2004, but see GREENWOOD & RosEMOND 2005), temporarily increasing the community's P-retention capacity. Abiotic P-sorption is an equilibrium process controlled by the relative concentrations of sorbed-P and dissolved-P, although it also depends on sediment size, iron, aluminum, organiQcontent, and pH (MEYER 1979). During long-term P-loading, sediment should become increasingly P-saturated, decreasing abiotic retention. Because biotic and abiotic P-uptake mechanisms could have opposite responses to long-term P-loading, the relative importance of each mechanism will control a stream's retention capacity over time. Specifically, where P-uptake is dominated by biotic pathways, streams could become temporarily more efficient at removing dissolved-P, whereas where P-uptake is primarily abiotic, streams potentially become less efficient.
机译:了解流生态系统的能力通过物理化学过程保留Nu - 托管,生物同化一直是流动生态学家的核心目标。目前,我们对营养饱和度的大多数理解基于短期(<1天)营养加法实验,同时预测总流生态系统对长期人为营养加载的反应,需要考虑到延长时段除去营养物的能力。溶解的磷(P)保留是由生物和非生物机制的组合产生的,这可以通过时间遵循不同的轨迹。藻类和异养微生物的短期生物p吸收通常涉及从水柱上的直接同化,并且在低背景可溶性反应性磷(SRP)水平下饱和(Mulholland等,1990)。然而,在长期p载荷期间,生物群落也可以通过增加生物量来响应(Peterson等,1985,Slavik等,2004年,但参见Greenwood&Rosemond 2005),暂时增加了社区的P保留能力。非生物p吸附是由吸附-P和溶解-P的相对浓度控制的平衡过程,尽管它还取决于沉积物大小,铁,铝,有机琼和pH(Meyer 1979)。在长期p载荷期间,沉积物应变得越来越饱和,减少非生物保留。因为生物和非生物的p吸收机制可以对长期p载荷的反应相反,所以每个机制的相对重要性将随着时间的推移控制流的保留能力。具体地,其中p吸收由生物途径支配,流动可以在去除溶解-p时暂时更有效,而p-upptake主要是非生物的,则流潜在地变得较低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号