首页> 外文会议>International Congress on Rheology >Colloidal Asphaltene Deposition and Aggregation in Capillary Flow: Experiments and Mesoscopic Simulation
【24h】

Colloidal Asphaltene Deposition and Aggregation in Capillary Flow: Experiments and Mesoscopic Simulation

机译:胶体沥青质沉积和毛细血管流量的聚集:实验和介观模拟

获取原文

摘要

The aggregation and deposition of colloidal asphaltene in reservoir rock is a significant problem in the oil industry. To obtain a fundamental understanding of this phenomenon, we have studied the deposition and aggregation of colloidal asphaltene in capillary flow by experiment and simulation. For the simulation, we have used the stochastic rotation dynamics (SRD) method, in which the solvent hydrodynamic emerges from the collisions between the solvent particles, while the Brownian motion emerges naturally from the interactions between the colloidal asphaltene particles and the solvent. The asphaltene colloids interact through a screened Coulomb potential. We vary the well depth and the flow rate v to obtain Peflow1 (hydrodynamic interactions dominate) and Re1 (Stokes flow). In the simulations, we impose a pressure drop over the capillary length and measure the corresponding solvent flow rate. We observe that the transient solvent flow rate decreases when the asphaltene particles become more “sticky”. For a well depth = 2kBT, a monolayer deposits on the capillary wall. With an increasing well depth, the capillary becomes totally blocked. The clogging is transient for = 5kBT, but appears to be permanent for = 10–20 kBT. We compare our simulation results with flow experiments in glass capillaries, where we use extracted asphaltenes in toluene, reprecipitated with n-heptane. In the experiments, the dynamics of asphaltene precipitation and deposition were monitored in a slot capillary using optical microscopy under flow conditions similar to those used in the simulation. Maintaining a constant flow rate of 5 μL min?1, we found that the pressure drop across the capillary first increased slowly, followed by a sharp increase, corresponding to a complete local blockage of the capillary. Doubling the flow rate to 10 μL min?1, we observe that the initial deposition occurs faster but the deposits are subsequently entrained by the flow. We calculate the change in the dimensionless permeability as a function of time for both experiment and simulation. By matching the experimental and simulation results, we obtain information about (1) the interaction potential well depth for the particular asphaltenes used in the experiments and (2) the flow conditions associated with the asphaltene deposition process.
机译:储层岩石中胶体沥青质的聚集和沉积是石油工业中的重大问题。为了获得对这种现象的根本理解,我们研究了通过实验和模拟研究了胶体流动中胶体沥青质的沉积和聚集。对于模拟,我们使用了随机旋转动力学(SRD)方法,其中溶剂流体动力学从溶剂颗粒之间的碰撞中出现,而Brownian运动自然出现在胶体沥青质颗粒和溶剂之间的相互作用。沥青质胶体通过筛选的库仑电位相互作用。我们改变了井深,流速V以获得PEFlow1(流体动力学相互作用主导地位)和RE1(Stokes Flow)。在模拟中,我们施加压力下降,并测量相应的溶剂流速。当沥青质颗粒变得更加“粘性”时,我们观察到瞬时溶剂流速降低。对于井深= 2KBT,毛细血管壁上的单层沉积物。随着井深的较大深度,毛细管完全被阻挡。堵塞是瞬时的= 5KBT,但似乎是永久的= 10-20 kBt。我们将模拟结果与玻璃毛细血管的流动实验进行比较,在那里我们在甲苯中用萃取的沥青质进行了比较,用正庚烷再沉淀。在实验中,使用与模拟中使用的那些类似于类似的流动条件,在槽毛细管中监测沥青质沉淀和沉积的动态。保持恒定流速为5μlmin?1,我们发现毛细管穿过的压降缓慢地增加,然后急剧增加,对应于毛细管的完全局部堵塞。将流速加长至10μlmin?1,我们观察到初始沉积更快地发生,但随后通过流动夹带沉积物。我们根据实验和仿真计算无量纲渗透性的变化。通过匹配实验和仿真结果,我们获得关于实验中使用的特定沥青质的相互作用潜在深度的信息和(2)与沥青质沉积过程相关的流动条件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号