首页> 外文会议>International Symposium on Electromagnetic Launch Technology >Modeling and analysis of a dual channel plasma torch for industrial, space, and launch applications
【24h】

Modeling and analysis of a dual channel plasma torch for industrial, space, and launch applications

机译:用于工业,空间和发射应用的双通道等离子体火炬的建模与分析

获取原文

摘要

Dual-channel thermal plasma torches can operate with air, argon, or combustible gases to produce high temperature plasma flows. This plasma torch can be used in various important applications such as metal industry recycling, surface coating and hardening, space operations using controlled thrust, and macroparticle acceleration based on the electrothermal nature of thermal torches and electrical-to-thermal energy conversion. Power for this torch is supplied from the electric mains and the voltage is stepped up to 6 kV. However, the torch can also operate in DC or in pulsed mode. The electrical operation is characterized by the VoltAmpere relationship to determine the power rating of the torch and diagnose the dynamic behavior of the plasma. Experiments on the torch using air and argon have shown plasma temperatures of 1 eV and 0.5 eV, respectively, with plasma number densities in the range of 10-10/m, indicating a dense plasma regime with the plasma tending to be weakly nonideal. Plasma kinetic temperature and electron number density were obtained from optical emission spectroscopy using the relative line method as the plasma is near local thermodynamic equilibrium (LTE) condition. The plasma temperature is at a maximum for low flow rates and decreases for increased flow rates. The torch modeling was conducted using an electrothermal plasma code to simulate and predict the parameters for pulsed mode operation. Simulation was conducted on a single channel as the dual torch is symmetric. Code results for extended pulse lengths show a plasma temperature between 0.6 eV and 0.8 eV for nitrogen, oxygen and helium, which are in good correlation with plasma temperatures obtained from optical emission spectra and measured plasma resistivity. A set of computational experiments using short pulses at higher discharge currents have shown temperatures in the range of 2.0–2.5 eV for nitrogen and helium.
机译:双通道热等离子体割炬可以用空气,氩气或可燃气体操作以产生高温等离子体流动。该等离子体炬可用于各种重要应用,例如金属工业回收,表面涂层和硬化,使用受控推力的空间操作,以及基于热炬的电热性和电热能量转换的宏观加速度。该火炬的电源从电源供应,电压踩到6 kV。然而,火炬也可以在DC或脉冲模式下操作。电操作的特征在于电压关系,以确定焊炬的功率额定值并诊断等离子体的动态行为。使用空气和氩气的火炬的实验表明了血浆温度分别为1eV和0.5eV,等离子体数密度在10-10 / m的范围内,表示致密的等离子体状态,等离子体趋于弱脱脂。使用相对线路法从光发射光谱获得等离子体动力学和电子数密度,因为等离子体在局部热力学平衡(LTE)条件附近。等离子体温度为低流量的最大值并降低流量增加。使用电热等离子体代码进行焊炬建模,以模拟和预测脉冲模式操作的参数。当双炬是对称的,在单个通道上进行仿真。扩展脉冲长度的代码结果显示氮气,氧和氦的0.6eV和0.8eV之间的等离子体温度,与从光发射光谱获得的等离子体温度和测量的等离子体电阻率良好相关。在较高放电电流下使用短脉冲的一组计算实验已经示出了氮和氦的2.0-2.5eV的温度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号