首页> 外文期刊>Nuclear Technology >Application of the Improved Spacer Grid Model in Subchannel Analysis Code
【24h】

Application of the Improved Spacer Grid Model in Subchannel Analysis Code

机译:改进的间隔网格模型在子信道分析代码中的应用

获取原文
获取原文并翻译 | 示例
       

摘要

In most subchannel analysis codes, spacer grids are simulated using an effective loss coefficient that can account only for the spacer grid's mean axial effect on the pressure drop. Since the mixing vane spacer grid (MVG) in a rod bundle has great influence on local flow fields, neglecting the effect of mixing vanes will degrade fidelity and resolution in thermal-hydraulic calculation. This paper focuses on improving the spacer grid model in subchannel analysis. First, cross-flow mixing effects of MVGs are accounted for by applying the distributed resistance method. By choosing resistance correlation appropriately and considering the geometric dimensions of mixing vanes, the source term of mixing vanes can be represented quantitatively in the axial and lateral momentum equations of a subchannel analysis code. Second, the Carlucci model is used to calculate mixing rates, and obstruction factor Fobs is introduced to consider turbulent mixing effects caused by spacer grids. The improved MVG cross-flow model and turbulent mixing model are implemented in the subchannel code ATHAS. Validation is provided for the 5 x 5 rod bundle experiments provided by Karoutas et al. [Proc. 7th Int. Mtg. Nuclear Reactor Thermal-Hydraulics (NURETH-7), Saratoga, New York (1995)] and high-quality experimental data provided by the Organisation for Economic Co-operation and Development/U.S. Nuclear Regulatory Commission Pressurized Water Reactor Subchannel and Bundle Test (PSBT) benchmark to demonstrate their effects and accuracy. From the validation, it can be concluded that the calculated lateral velocities agree well with those provided by the experimental data. In addition, the improved cross-flow and turbulent mixing models significantly increase the accuracy of predictions of exit subchannel coolant temperatures, with reduction in root-mean-square error to be 2.27 K.
机译:在大多数子通道分析代码中,使用有效损耗系数模拟间隔栅,该损耗系数仅能解释间隔栅对压降的平均轴向影响。由于杆束中的混合叶片隔栅(MVG)对局部流场有很大的影响,因此忽略混合叶片的作用会降低热工液压计算的保真度和分辨率。本文着重在子通道分析中改进间隔格模型。首先,通过采用分布阻力法来解决MVG的错流混合效应。通过适当选择阻力相关性并考虑混合叶片的几何尺寸,可以在子通道分析代码的轴向和横向动量方程中定量表示混合叶片的源项。其次,使用Carlucci模型计算混合速率,并引入阻塞因子Fobs来考虑由间隔网格引起的湍流混合效应。改进的MVG错流模型和湍流混合模型在子通道代码ATHAS中实现。 Karoutas等人提供的5 x 5棒束实验的验证。 [过程第七届Mtg。核反应堆热工技术(NURETH-7),纽约萨拉托加(1995)]和经济合作与发展组织(美国)提供的高质量实验数据。核监管委员会压水堆子通道和管束测试(PSBT)基准,以证明其效果和准确性。从验证中可以得出结论,计算出的横向速度与实验数据提供的吻合很好。此外,改进的错流和湍流混合模型显着提高了出口子通道冷却液温度预测的准确性,均方根误差降低了2.27K。

著录项

  • 来源
    《Nuclear Technology》 |2019年第2期|352-363|共12页
  • 作者单位

    Xi An Jiao Tong Univ, State Key Lab Multiphase Flow, Xianning West Rd 28, Xian 710049, Shaanxi, Peoples R China;

    Nucl Power Inst China, State Key Lab Reactor Syst Design Technol, Chengdu, Sichuan, Peoples R China;

    Xi An Jiao Tong Univ, State Key Lab Multiphase Flow, Xianning West Rd 28, Xian 710049, Shaanxi, Peoples R China;

    Xi An Jiao Tong Univ, State Key Lab Multiphase Flow, Xianning West Rd 28, Xian 710049, Shaanxi, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Subchannel analysis; spacer grid model; mixing vanes; distributed resistance method; turbulent mixing;

    机译:子通道分析;隔栅模型;混合叶片;分布式阻力法;湍流混合;
  • 入库时间 2022-08-18 04:14:00

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号