首页> 外文会议>Fuel Cell Seminar >Performance Envelope for Fuel Cell Heat Engine Hybrids and Heat Engine Combustors
【24h】

Performance Envelope for Fuel Cell Heat Engine Hybrids and Heat Engine Combustors

机译:用于燃料电池供热发动机混合动力和热发动机燃烧器的性能包络

获取原文

摘要

The performance envelope for fuel cell heat engine hybrid cycles is developed and explored. The benefit of fuel cell heat engine hybrids in conversion of chemical energy was thermodynamically established. Fuel cell hybrids are combination of energy conversion sub-systems - fuel cells and heat engines. Fuel cell hybrids are important for the future for they are the most efficient devices when converting chemical energy of methane from renewable fuels to electricity. The power produced from an ideal fuel cell hybrid is a function of the current and the standard Gibbs free energy at unit activities. On the other side the operation of heat engines heated by a chemical reaction is based on the same principles, however the technical potential of direct electron transport is principally not used. The fuel cell allows an almost reversible operation at ambient temperature while the Carnot type engine operates principally reversible at a reversible Carnot temperature where the free enthalpy of the reaction is zero. Hybrid systems unify the benefits of both technologies and expand the possible range of operation to all temperatures between ambient and the above mentioned reversible Carnot temperature. The fuel cell hybrid performance is always higher than or equal to the heat engine combustor performance. It is higher until the Carnot temperature of 4,300K in the case of hydrogen combustion. By the same token, the fuel cell hybrid performance occurs over a limited temperature range due to the narrow operating temperatures of fuel cells. The practical operating temperature of a fuel cell, and hence the fuel cell heat engine hybrid, is less than 1,400K. At temperatures from 298K to 1,400K, the fuel cell hybrid performance exceeds all other performances, of course. The cooled fuel cell power case exceeds heat combustion performance until around 1.200K. This paper builds from and is an extension of several papers recently published in the Journal of The Electrochemical Society (ECS), ECS Transactions, and the Journal of Fuel Cell Science and Technology, and the International Journal of Hydrogen Energy.
机译:开发和探索了燃料电池热发动机混合循环的性能包络。热力学建立了在化学能转化中燃料电池热发动机杂种的益处。燃料电池混合动力器是能量转换子系统 - 燃料电池和热发动机的组合。燃料电池混合动力器对于未来对未来是最有效的设备,当从可再生燃料转换为电力时是最有效的设备。由理想的燃料电池混合动力产生的功率是当前的函数和单位活动的标准GIBBS自由能。在另一边,通过化学反应加热的热动发动机的操作基于相同的原理,但主要不使用直接电子传输的技术潜力。燃料电池允许在环境温度下几乎可逆的操作,同时碳型发动机主要在可逆的圆环温度下操作,其中反应的自由焓为零。混合系统统一了两种技术的益处,并将可能的操作范围扩展到环境之间的所有温度和上述可逆钟状钟温度。燃料电池混合性能总是高于或等于热发动机燃烧器性能。在氢气燃烧的情况下,它较高直到4300K的4,300k。通过同样的令牌,由于燃料电池的窄操作温度,燃料电池混合性能发生在有限的温度范围内。燃料电池的实际工作温度,因此燃料电池热发动机杂交机小于1,400K。在298K至1,400K的温度下,燃料电池混合性能当然超过了所有其他性能。冷却的燃料电池电源壳体超过热燃烧性能直至1.200K。本文从最近在电化学协会(ECS),ECS交易杂志,ECS交易杂志和燃料电池科学与技术杂志中,延伸了几篇论文的延伸,以及国际氢气能源杂志。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号