【24h】

Federated Patient Hashing

机译:联邦病人散列

获取原文

摘要

Privacy concerns on sharing sensitive data across institutions are particularly paramount for the medical domain, which hinders the research and development of many applications, such as cohort construction for cross-institution observational studies and disease surveillance. Not only that, the large volume and heterogeneity of the patient data pose great challenges for retrieval and analysis. To address these challenges, in this paper, we propose a Federated Patient Hashing (FPH) framework, which collaboratively trains a retrieval model stored in a shared memory while keeping all the patient-level information in local institutions. Specifically, the objective function is constructed by minimization of a similarity preserving loss and a heterogeneity digging loss, which preserves both inter-data and intra-data relationships. Then, by leveraging the concept of Bregman divergence, we implement optimization in a federated manner in both centralized and decentralized learning settings, without accessing the raw training data across institutions. In addition to this, we also analyze the convergence rate of the FPH framework. Extensive experiments on real-world clinical data set from critical care are provided to demonstrate the effectiveness of the proposed method on similar patient matching across institutions.
机译:对医疗领域的分享敏感数据的隐私问题对于医学领域来说是尤为普及的,这阻碍了许多应用的研究和开发,例如跨机构观察研究和疾病监测的队列建设。不仅如此,患者数据的大容量和异质性造成了巨大的检索和分析挑战。为了解决这些挑战,在本文中,我们提出了一种联邦患者散列(FPH)框架,其协作训练存储在共享内存中的检索模型,同时保留本地机构中的所有患者级信息。具体地,通过最小化相似性保留损失和异质性挖掘损失来构造目标函数,这保留了数据间和数据内关系。然后,通过利用Bregman分歧的概念,我们在集中和分散的学习设置中以联合和分散的学习设置实现优化,而无需访问跨机构的原始培训数据。除此之外,我们还分析了FPH框架的收敛速度。提供了关于从关键护理的现实世界临床数据的大量实验,以证明所提出的方法对跨机构的类似患者的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号