首页> 外文会议>National Passive Solar Conference >SOLREF - Development of an advanced Solar High-temperature Reformer
【24h】

SOLREF - Development of an advanced Solar High-temperature Reformer

机译:SOLREF - 高级太阳能高温重整机的开发

获取原文
获取外文期刊封面目录资料

摘要

The main target of the EU project SOLREF (solar steam reforming) is to develop a highly efficient and cost effective solar reactor for high-temperature reforming. This was reached by designing a new more compact reformer with innovative solutions. In addition to construction solutions in interaction between DLR and HyGear, the layout of the absorber was done at DLR by using simulations tools (HELIOS, SORSIM, VORECO) augmented or developed at DLR. First, the geometry of the absorber was optimized during an iteration process using the results of SORSIM simulation runs, which generated flux density distributions on the absorber Secondly, the final output was used as the input for the VORECO software, which simulated the mass and heat transfer inside the absorber of the reformer; The resulting layout data are as follows:o Absorbed power: approx 400 kWth; up to 500kW,hcan be possible.o Methane conversion level, overall: 80-90 %o Temperature of the product gas, receiver exit: approx.900°Co Operating pressure: 15 bars (optimal: 10 bars)o Fluid inlet temperature: approx. 450°CFurthermore, the paper discusses the temperature distribution in the absorber (one-dimensional) and on the absorber surface. Due to the fact that hot spots reduce the catalyst activity significantly and also lead to the destruction of the absorber material, the absorber will have different mass flow regulations. Experimental experiences from the previous project SOLASYS and actual simulations show that the adapted mass flow regulations will reduce the maximum absorber temperature from 1100°C down to below 1000°C and the temperature differences in and on the absorber from 200-300K down to about 100K or less.
机译:欧盟项目SOLREF(太阳能蒸汽重整)的主要目标是开发一种高效且具有成本效益的太阳能反应堆,用于高温重整。通过设计具有创新解决方案的新型更紧凑的重整器来达到这一点。除了在DLR和Hygear之间的相互作用中的施工解决方案之外,通过使用模拟工具(Helios,Sorsim,Voreco)在DLR上使用模拟工具(Helios,Sorsim,Voreco),在DLR完成了吸收器的布局。首先,使用Sorsim仿真运行的结果在迭代过程期间优化了吸收器的几何形状,其产生了在吸收器上的磁通密度分布,最终输出用作Voreco软件的输入,模拟质量和热量在改革者的吸收器内部转移;所得到的布局数据如下:o吸收功率:约400 kWth;高达500kW,HCAN是可能的。甲烷转换级别,总体:80-90%O温度的产品气体,接收器出口:约900°CO工作压力:15巴(最佳:10巴)O流体入口温度:约。 450°Cfurtherthore,本文讨论了吸收器(一维)和吸收剂表面的温度分布。由于热点显着降低催化剂活性并且还导致吸收材料的破坏,吸收器将具有不同的质量流量规范。从先前的项目SOLASYS和实际模拟的实验经验表明,适应的质量流量规定将使最大吸收温度从1100°C降低至低于1000°C,并且吸收器中的温度差异从200-300k下降到约100k。或更少。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号