首页> 外文会议>Annual Conference of the North American Thermal Analysis Society >Using Adiabatic, Scanning and Isothermal Calorimetry to Measure the Performance and Thermal Runaway Characteristics of Li-ion Cells
【24h】

Using Adiabatic, Scanning and Isothermal Calorimetry to Measure the Performance and Thermal Runaway Characteristics of Li-ion Cells

机译:使用绝热,扫描和等温热量测量测量锂离子电池的性能和热失控特性

获取原文

摘要

Li-ion batteries have many postive atributes which explains their rapid integration into many portable and stationary applications. Still thermal runaway of these cells remain a major issue which requires engineering controls and testing. Runaways can occur due to internal or external shorting of a cell/pack or from the mechanical impact due to crushing or penetration. Understanding how these thermal runaway events occur and the resultant temperature and pressure changes within the cell is critical in designing safety systems to reduce the likelihood and/or mitigate the consequence of such thermal failures. Adiabatic calorimetry has been applied to studying the thermal decomposition of cells as it provides a "worst case" or adiabatic scenario in measuring thermal runaway within a cell. All the heat released from an exothermic reaction within the cell (i.e., decomposition, discharge) is maintained within the cells causing the cell temperature to increase. This leads to faster reactions, more heat production, higher temperatures, and eventually to thermal runway and catastrophic cell failure. Adiabatic calorimeters, more so then most other types of laboratory calorimeters, are designed to withstand repeated thermal runaway and potential explosions. It is now possible to measure inside a closed, high tracking rate adiabatic calorimeter, the temperature and pressure rise from nail penetration of an 18650 cell before, during, and after a nail penetration test. This information is critical in understanding how to prevent cascading cell failure in a battery pack from one runaway cell.
机译:锂离子电池有许多垂直的一点,解释了它们在许多便携式和静止应用中的快速整合。这些单元格的仍然热失控仍然是需要工程控制和测试的主要问题。由于电池/包装的内部或外部短路或由于破碎或渗透而从机械冲击的内部短路,可能发生追踪。了解这些热失控事件发生如何,并且电池内的所得温度和压力变化在设计安全系统方面是至关重要的,以减少可能性和/或减轻这种热失效的后果。已应用绝热性量量测定法研究细胞的热分解,因为它提供了在电池内测量热失控的“最坏情况”或绝热场景。从细胞(即分解,排出)内的放热反应中释放的所有热量保持在细胞内,导致细胞温度增加。这导致更快的反应,更多的热量生产,更高的温度,最终导致热跑道和灾难性的细胞衰竭。绝热量热量计,即大多数其他类型的实验室量热计,旨在承受重复的热失控和潜在的爆炸。现在可以测量闭合,高跟踪速率绝热仪,在指甲渗透试验之前,期间和之后的18650个细胞的指甲渗透的温度和压力增加。此信息对于了解如何防止来自一个失控单元的电池组中的级联单元故障至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号