首页> 外文会议>International Symposium on Nonlinear Acoustics >3D Numerical Simulation of the Long Range Propagation of Acoustical Shock Waves Through a Heterogeneous and Moving Medium
【24h】

3D Numerical Simulation of the Long Range Propagation of Acoustical Shock Waves Through a Heterogeneous and Moving Medium

机译:通过异构和移动介质的声学冲击波长距离传播的3D数值模拟

获取原文

摘要

Many situations involve the propagation of acoustical shock waves through flows. Natural sources such as lightning, volcano explosions, or meteoroid atmospheric entries, emit loud, low frequency, and impulsive sound that is influenced by atmospheric wind and turbulence. The sonic boom produced by a supersonic aircraft and explosion noises are examples of intense anthropogenic sources in the atmosphere. The Buzz-Saw-Noise produced by turbo-engine fan blades rotating at supersonic speed also propagates in a fast flow within the engine nacelle. Simulating these situations is challenging, given the 3D nature of the problem, the long range propagation distances relative to the central wavelength, the strongly nonlinear behavior of shocks associated to a wide-band spectrum, and finally the key role of the flow motion. With this in view, the so-called FLHOWARD (acronym for FLow and Heterogeneous One-Way Approximation for Resolution of Diffraction) method is presented with three-dimensional applications. A scalar nonlinear wave equation is established in the framework of atmospheric applications, assuming weak heterogeneities and a slow wind. It takes into account diffraction, absorption and relaxation properties of the atmosphere, quadratic nonlinearities including weak shock waves, heterogeneities of the medium in sound speed and density, and presence of a flow (assuming a mean stratified wind and 3D turbulent ? flow fluctuations of smaller amplitude). This equation is solved in the framework of the one-way method. A split-step technique allows the splitting of the non-linear wave equation into simpler equations, each corresponding to a physical effect. Each sub-equation is solved using an analytical method if possible, and finite-differences otherwise. Nonlinear effects are solved in the time domain, and others in the frequency domain. Homogeneous diffraction is handled by means of the angular spectrum method. Ground is assumed perfectly flat and rigid. Due to the 3D aspect, the code was massively parallelized using the single program, multiple data paradigm with the Message Passing Interfaces (MPI) for distributed memory architectures. This allows us to handle problems in the order of a thousand billion mesh points in the four dimensions (3 dimensions of space plus time). The validity of the method has been thoroughly evaluated on many cases with known solutions: linear piston, scattering of plane wave by a heterogeneous sphere, propagation in a waveguide with a shear flow, scattering by a finite amplitude vortex and nonlinear propagation in a thermoviscous medium. This validation process allows for a detailed assessment of the advantages and limitations of the method. Finally, applications to atmospheric propagation of shock waves will be presented.
机译:很多情况下,涉及声学冲击波的通过流量的传播。天然来源如闪电,火山爆发,或流星大气条目,发出大声,低频率和脉冲声音由大气风和紊流的影响。由超音速飞机和爆炸的噪音产生的爆音是在大气中激烈人为来源的例子。蜂鸣音锯噪声通过涡轮发动机的风扇叶片以超音速的速度旋转产生也传播在发动机机舱内的快速流动。模拟这些情况是具有挑战性的,给定的问题的性质3D,长范围的传播距离相对于中心波长,关联到一个宽频带谱冲击的强非线性行为,最后流运动的关键作用。有鉴于此,所谓FLHOWARD(缩写流量和异构单向逼近衍射的分辨率)方法呈现三维应用程序。标量非线性波动方程被建立在大气应用的框架中,假设弱非均质性和缓慢的风。它考虑到衍射,大气的吸收和缓和性,二次非线性包括弱冲击波,在声音的速度和密度的介质的非均质性,以及流的存在(假设平均分层风和三维湍流?流动的较小的波动振幅)。这个方程就是单向法的框架内解决。甲分步技术允许非线性波动方程的分裂成更简单的方程,每一个对应于一个物理效应。每个子方程如果可能的话使用分析方法来解决,和有限的差异,否则。非线性效应解决在时域,和其他人在频域。均匀衍射由角谱方法来处理。地面假设完全平坦的和刚性。由于3D方面,所述代码使用单一节目,与消息传递接口(MPI)对分布式存储器结构的多个数据模式大规模并行化。这使我们能够处理在四个维度一千十亿网格点(的空间加上时间维)的顺序问题。该方法的有效性已经在许多情况下被彻底评估与已知的解决方案:线性活塞,由多相球体,传播与剪切流动的波导散射平面波,通过在压热介质有限振幅涡流和非线性传播散射。此验证过程允许的优点,并且该方法的限制的详细评估。最后,应用冲击波的大气传播将提交。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号