首页> 外文会议>International Symposium on Nonlinear Acoustics >Discontinuous Galerkin Method with Gaussian Artificial Viscosity on Graphical Processing Units for Nonlinear Acoustics
【24h】

Discontinuous Galerkin Method with Gaussian Artificial Viscosity on Graphical Processing Units for Nonlinear Acoustics

机译:具有高斯人工粘度的不连续的Galerkin方法,用于非线性声学的图形处理单元

获取原文

摘要

Propagation of acoustical shock waves in complex geometry is a topic of interest in the field of nonlinear acoustics. For instance, simulation of Buzz Saw Noice requires the treatment of shock waves generated by the turbofan through the engines of aeroplanes with complex geometries and wall liners. Nevertheless, from a numerical point of view it remains a challenge. The two main hurdles are to take into account the complex geometry of the domain and to deal with the spurious oscillations (Gibbs phenomenon) near the discontinuities. In this work, first we derive the conservative hyperbolic system of nonlinear acoustics (up to quadratic nonlinear terms) using the fundamental equations of fluid dynamics. Then, we propose to adapt the classical nodal discontinuous Galerkin method to develop a high fidelity solver for nonlinear acoustics. The discontinuous Galerkin method is a hybrid of finite element and finite volume method and is very versatile to handle complex geometry. In order to obtain better performance, the method is parallelized on Graphical Processing Units. Like other numerical methods, discontinuous Galerkin method suffers with the problem of Gibbs phenomenon near the shock, which is a numerical artifact. Among the various ways to manage these spurious oscillations, we choose the method of parabolic regularization. Although, the introduction of artificial viscosity into the system is a popular way of managing shocks, we propose a new approach of introducing smooth artificial viscosity locally in each element, wherever needed. Firstly, a shock sensor using the linear coefficients of the spectral solution is used to locate the position of the discontinuities. Then, a viscosity coefficient depending on the shock sensor is introduced into the hyperbolic system of equations, only in the elements near the shock. The viscosity is applied as a two-dimensional Gaussian patch with its shape parameters depending on the element dimensions, referred here as Element Centered Smooth Artificial Viscosity. Using this numerical solver, various numerical experiments are presented for one and two-dimensional test cases in homogeneous and quiescent medium. This work is funded by CEFIPRA (Indo-French Centre for the Promotion of Advance Research) and partially aided by EGIDE (Campus France).
机译:复杂几何中声学冲击波的传播是非线性声学领域感兴趣的话题。例如,Buzz Saw Oeice的仿真需要通过具有复杂的几何形状和壁衬的飞机发动机来处理由涡轮箱产生的冲击波。尽管如此,从数字观点来看,它仍然是一个挑战。这两个主要障碍是考虑到域的复杂几何形状,并处理在不连续性附近的虚假振荡(GIBB现象)。在这项工作中,首先使用流体动力学的基本方程来推导出非线性声学(直到二次非线性术语)的保守双曲线系统。然后,我们建议适应经典节点不连续的Galerkin方法,为非线性声学进行高保真求解器。不连续的Galerkin方法是有限元和有限体积法的混合动力,非常通用,可以处理复杂的几何形状。为了获得更好的性能,该方法在图形处理单元上并行化。像其他数值方法,具有的吉布斯现象附近震荡,这是一个数字工件问题间断Galerkin方法存在。在管理这些虚假振荡的各种方式中,我们选择抛物线正则化方法。虽然,将人工粘度引入系统是管理冲击的流行方式,我们提出了一种新的方法,可以在每个元件中局部引入平稳的人造粘度。首先,使用光谱溶液的线性系数的冲击传感器来定位不连续性的位置。然后,将根据冲击传感器的粘度系数引入等式的双曲线系统,仅在震动附近的元件中。粘度用其形状参数施加为二维高斯贴剂,根据元件尺寸,此处称为元素中心平稳的人工粘度。使用该数值求解器,在均匀和静止介质中呈现各种数值实验和二维测试用例。这项工作由CEFIPRA(印度法国促进进程研究)资助,并通过Egide(校园法国)部分辅助。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号