首页> 外文会议>International Conference on Superplasticity in Advanced Materials >Mesoscopic Scale Modeling of 'Superplastic' Flow in Geological and Glacial Materials
【24h】

Mesoscopic Scale Modeling of 'Superplastic' Flow in Geological and Glacial Materials

机译:地质和冰川材料中“超塑性”流动的介观规模建模

获取原文

摘要

A viewpoint that suggests that grain/interphase boundary sliding (GBS) that develops to a mesoscopic scale ("cooperative boundary sliding") controls optimal superplastic (SP) deformation is able to explain superplasticity in metals and alloys, ceramics, intermetallics, composites and bulk metallic glasses of grain sizes ranging from a few microns down to a few nanometers. It is extended here to describe grain-size-sensitive (GSS) flow in minerals, rocks and ice within narrow experimental ranges. In this approach the accommodation processes of grain boundary diffusion, dislocation emission from sliding boundaries and/or grain rotation accompanying boundary sliding are present over extremely short distances and are assumed to be faster than GBS. Analysis shows that GSS creep in geological and glacial materials can be accounted for in terms of four "universal", mesoscopic scale constants of average values, γ_0= 0.197, γ_B = 0.415 J.m-2, N = 8.9 and a = 0.166, where γ_0 is the average shear strain associated with a basic boundary sliding event at the level of the atomistics, γ_B is the specific grain boundary energy (assumed to be isotropic), N is the number of boundaries that align to form a mesoscopic boundary glide plane and "a" is a constant that obeys the condition 0
机译:这表明,颗粒/相间界滑移视点(GBS),其发展到介观尺度(“合作界滑移”)控制最佳超塑性(SP)的变形能够在金属和合金,陶瓷,金属间化合物,复合材料和散装解释超塑性颗粒尺寸范围从几微米的金属玻璃下降到几纳米。在此扩展,以描述粒度敏感(GSS)在矿物,岩石流和冰狭窄实验范围内。在这种方法中,从滑动边界和/或晶粒旋转伴随界滑移晶界扩散,位错发射的容纳方法是本超过极短距离和被假定为比GBS更快。分析表明,在地质和冰材料GSS蠕变可以以四个“通用”,介观尺度的平均值的常数,γ_0= 0.197,γ_B= 0.415 JM-2,N = 8.9和α= 0.166,其中γ_0术语来解释与碱性边界在原子论的水平滑动事件相关联的平均剪切应变,γ_B是特定晶界能(假设为各向同性的),N是边界数,该数对准以形成介观边界滑移面和“ a”是一个常数,它服从条件0 <α<0.5,其大小取决于颗粒的形状和材料中的大小分布。已经证明,这四个常数和霜阿什比方程估计所述剪切模量的帮助下,它可以预测在任何地质或冰材料稳态GSS蠕变流,包括那些机械响应不用于获得“万能”的常量。是否这些观察证据对这些材料中“超塑性”仅当发现在拉伸变形再现也是已知的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号