首页> 外文会议>Solar Polarization Workshop >Precision VUV Spectro-Polarimetry for Solar Chromospheric Magnetic Field Measurements
【24h】

Precision VUV Spectro-Polarimetry for Solar Chromospheric Magnetic Field Measurements

机译:精密VUV光谱 - 太阳能磁场磁场测量

获取原文

摘要

The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is a VUV spectro-polarimeter optimized for measuring the linear polarization of the Lyman- a line (121.6 nm) to be launched in 2015 with NASA's sounding rocket (Ishikawa et al. 2011; Narukage et al. 2011; Kano et al. 2012; Kobayashi et al. 2012). With this experiment, we aim to (1) observe the scattering polarization in the Lyman-α line, (2) detect the Hanle effect, and (3) assess the magnetic fields in the upper chromosphere and transition region for the first time. The polarization measurement error consists of scale error δa (error in amplitude of linear polarization), azimuth error ΔΦ (error in the direction of linear polarization), and spurious polarization ? (false linear polarization signals). The error ? should be suppressed below 0.1% in the Lyman-α core (121.567 nm ±0.02 nm), and 0.5% in the Lyman-α wing (121.567 nm ±0.05 nm), based on our scientific requirements shown in Table 2 of Kubo et al. (2014). From scientific justification, we adopt AΦ < 2° and δa < 10% as the instrument requirements. The spectro-polarimeter features a continuously rotating MgF2 waveplate (Ishikawa et al. 2013), a dual-beam spectrograph with a spherical grating working also as a beam splitter, and two polarization analyzers (Bridou et al. 2011), which are mounted at 90 degree from each other to measure two orthogonal polarization simultaneously. For the optical layout of the CLASP instrument, see Figure 3 in Kubo et al. (2014). Considering the continuous rotation of the half-waveplate, the modulation efficiency is 0.64 both for Stokes Q and U. All the raw data are returned and demodulation (successive addition or subtraction of images) is done on the ground.
机译:Chromosheric Lyman-Alpha Spectro-偏振仪(CLASP)是VUV光谱 - 偏振仪,优化用于测量Lyman的线性极化(121.6 nm),在2015年与美国国家航空航天局的发声火箭(Ishikawa等,2011; Narukage等人。2011; Kano等。2012; Kobayashi等,2012)。通过该实验,我们的目标是(1)观察Lyman-α线中的散射极化,(2)检测Hanle效果,并且(3)首次评估上铬圈和过渡区域中的磁场。偏振测量误差由比例误差ΔA(线性偏振幅度误差),方位角误差Δφ(线性极化方向误差)和杂散极化? (假线性偏振信号)。错误 ?在Lyman-α核心(121.567nm±0.02nm)中,应抑制低于0.1%,基于我们的科学要求在Kubo等人表2中所示的科学要求,0.5% 。 (2014)。根据科学的理由,我们采用AΦ<2°和ΔA<10%作为仪器要求。光谱 - 偏振仪具有连续旋转的MGF2波片(ISHikawa等,2013),双光束光谱仪,带有球形光栅的双光束光谱仪作为分束器,以及两个偏振分析仪(Bridou等,2011),它们安装在彼此90度以同时测量两个正交偏振。对于扣式仪器的光学布局,请参见Kubo等人的图3。 (2014)。考虑到半波形的连续旋转,STOKE Q和U的调制效率为0.64。返回所有原始数据并在地面上完成了解调(连续添加或减法)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号