首页> 外文会议>IMAPS/ACerS International Conference and Exhibition on Ceramic Interconnect and Ceramic Microsystems Technologies >All-Crystal-State Lithium-Ion Batteries: Innovation Inspired by Novel Flux Coating Method
【24h】

All-Crystal-State Lithium-Ion Batteries: Innovation Inspired by Novel Flux Coating Method

机译:全水晶锂离子电池:创新受新型助焊剂涂层方法的启发

获取原文

摘要

All-solid-state lithium-ion rechargeable batteries (LIBs) consisting of solid electrolyte materials have attracted a number of research interests because no use of organic liquid electrolyte increases packaging density and intrinsic safety of LIB, which contribute the development on environmentally-friendly automobiles such as electric vehicle (EV), hybrid vehicle (HV), and plug-in hybrid vehicle (HEV), in addition to efficient utilization of electric energy in smart grid. Among various solid electrolytes, inorganic electrolyte materials have achieved relatively high lithium-ion conductivity and better stability at an ambient atmosphere. Nevertheless, there is a drawback that is relatively high internal resistance owing to relatively slow Li ion movement caused by low crystallinity of materials, scattering at interfaces such as current collector/electrode active materials and electrode active materials/electrolyte materials. In this context, we have proposed a concept, all-crystal-state LIB, in which all the component materials have high crystallinity and those interfaces are effective for Li ion diffusion. Here, we present the fabrication of oxide crystals and crystal layers via flux method and flux coating. Flux method is one of the solution processes in which idiomorphic highly crystalline materials can be obtained under the melting point of the target ones. In addition, it provides simple, low-cost and environmentally-benign pathway compared to conventional solid-state-reaction method. Flux coating method is developed to fabricate high-quality crystal layers (films) on various substrates. High-quality crystals and crystal layers of cathode, anode and electrolyte materials were successfully fabricated.
机译:由固体电解质材料组成的全固态锂离子可充电电池(LIBS)吸引了许多研究兴趣,因为没有使用有机液体电解质增加包装密度和LIB的内在安全性,这导致了环保型汽车的开发如电动车辆(EV),混合动力车辆(HV)和插入式混合动力车辆(HEV),除了在智能电网中有效利用电能之外。在各种固体电解质中,无机电解质材料在环境气氛中实现了相对高的锂离子电导率和更好的稳定性。然而,由于材料的低结晶度引起的锂离子运动相对较慢,散射在诸如集电器/电极活性材料和电极活性材料/电解质/电解质材料的界面处引起的锂离子运动相对较慢的Li离子运动,存在相对较高的内阻的缺点。在这种情况下,我们提出了一种概念,全晶态Lib,其中所有组分材料具有高结晶度,并且这些界面对于Li离子扩散有效。这里,我们通过助焊法和助焊剂涂层呈现氧化物晶体和晶体层的制造。助熔剂方法是溶液过程之一,其中可以在靶标的熔点下获得成语高结晶材料。此外,与传统的固态反应方法相比,它提供了简单,低成本和环保的途径。开发助焊剂涂布方法以在各种基材上制造高质量的晶体层(薄膜)。成功制造了高质量的阴极,阳极和电解质材料的晶体层。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号