首页> 外文会议>International Renewable Energy Storage Conference >Energy system design for deep decarbonization of a sunbelt city by using a hybrid storage approach
【24h】

Energy system design for deep decarbonization of a sunbelt city by using a hybrid storage approach

机译:利用混合储存方法,能源系统设计用于阳光城的深脱碳

获取原文

摘要

With continuously falling cost of renewable power generation and ambitious decarbonization targets, renewable sources are about to rival fossil fuels for energy supply. For a high share of fluctuating renewable generation, large-scale energy storage is likely to be required. In addition to selling electricity, the reliable supply of heat and cold is a further interesting revenue pool, which makes hybrid storage technologies an interesting option. The main feature of hybrid energy storage - as defined here - is to offer charging and especially discharging in different forms of energy by combining different charging, discharging and storage devices. They can address various demands (e.g. electricity and cold) simultaneously. Two hybrid storages, pumped thermal energy storage (PTES) and power-to-heat-to-x (x: heat and/or electricity) energy storage (PHXES), are investigated based on a techno-economic analysis within this work. Both hybrid storage technologies are charged with electricity and can supply heat and electricity during discharging. They are implemented into a simplified energy system model of a prototype city in the earth's sunbelt in the year 2030 to find a cost-optimal configuration. Different cases are evaluated: a power-to-power case (P2P), where only an electric demand must be addressed and a power-to-power-and-cooling (P2P&C) case, where the electric demand from the P2P case is divided into a residual electric demand and a cooling demand. For both cases, a natural gas-based benchmark scenario and a decarbonized, renewable-based scenario including the hybrid energy storage technologies are calculated. Both, total expenditures and CO_2 emissions are lower in the P2P&C scenarios compared to P2P scenarios. PHXES plays a major role in both cases. PTES is part of the cost-optimal solution in the P2P&C decarb scenario, only if its specific cost are further decreased.
机译:随着可再生能源发电和雄心勃勃的脱碳目标的不断下降,可再生能源即将对竞争对手进行能源供应。对于高度波动的可再生生成,可能需要大规模的能量存储。除了销售电力外,可靠的热量和寒冷供应是一个进一步有趣的收入池,使混合储存技术成为一个有趣的选择。混合能量存储的主要特征 - 如本文所定义 - 通过组合不同的充电,放电和存储装置来提供不同形式的能量的充电,特别是放电。他们可以同时解决各种需求(例如电力和冷)。两种混合储存,泵送的热能存储(PTE)和电力至热到X(X:热量和/或电力)能量存储(PHXES)是基于本工作中的技术经济分析。混合储存技术都被充电,可以在放电期间提供热量和电力。它们是在2030年的地球阳光下的原型城的简化能量系统模型中,以找到成本最佳配置。评估不同的情况:电源到电源壳(P2P),只有电力需求,只能解决电源和冷却(P2P&C)案例,其中P2P案例的电价分开进入残留的电气需求和冷却需求。对于这两种情况,计算了一种基于天然气的基准场景和脱碳,可再生的基于基于性的场景,包括混合能量存储技术。与P2P场景相比,P2P&C情景中的总支出和CO_2排放都较低。 PHXES在这两种情况下发挥着重要作用。 PTES是P2P&C Decarb情景中成本最佳解决方案的一部分,只有其特定成本进一步降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号