首页> 外文会议>International Symposium on Unmanned Untethered Submersible Technology >STALL MECHANISM ANALYSIS OF HUMPBACK WHALE FLIPPER MODELS
【24h】

STALL MECHANISM ANALYSIS OF HUMPBACK WHALE FLIPPER MODELS

机译:驼背鲸鳍状型模型的失速机理分析

获取原文

摘要

Previous research has shown that large rounded tubercles on the leading edge of humpback whale flipper models can delay stall angle by up to 40% while improving the drag performance over a range of attack angles (Miklosovic, 2004) The tubercles suggest a correlation to other control devices such as vortex generators and wing fences. The research that highlighted the superior stall behavior of tubercled leading edge flippers compared to smooth leading edge flippers was carried out using half span wing models of whale flippers. The stall behavior of wing models can be complicated by the progression of stall over the span of the wing. The research described in this paper involves the construction, testing and analysis of several airfoil models in order to better understand the stall mechanism(s) associated with the humpback whale flipper. Since airfoils have no root or tip, stall ideally occurs over the entire span. Three different airfoil models, one with leading edge tubercles, one with a smooth leading edge and the third with a smooth leading edge and vortex generators, were tested in an open circuit wind tunnel at the U.S. Naval Academy. By comparing the stall behavior of airfoils with smooth and tubercled leading edges, the function of the tubercles as a spanwise or chordwise stall inhibitors was explored. A smooth airfoil with conventional vortex generators was also tested for comparison with the tubercled airfoil. The results obtained indicate that the tubercled airfoil produces less lift and more drag than a smooth airfoil through a range of attack angles. The inferior performance of the tubercled airfoil suggests that the function of the tubercles on half span humpback whale fins tested by Miklosovic et al. (2004) may be tied to the spanwise progression of stall.
机译:以前的研究表明,驼背鲸鱼件型号的主要圆形结节在驼背鲸芯片型号上可以延迟失速角度高达40%,同时提高了一系列攻击角度(Miklosovic,2004)的拖曳性能,结合表示与其他控制的相关性涡流发生器和翼栅等设备。使用半跨翼蹼的半跨度翼型进行了与光滑的前缘脚蹼相比,突出了结核前缘脚蹼的卓越失速行为的研究是使用鲸鱼脚蹼的半跨度翼型。翼型的摊位行为可以通过翼横在翼横向的档位的进展复杂。本文描述的研究涉及几种翼型模型的构造,测试和分析,以便更好地理解与驼背鲸鳍状公司相关的失速机制。由于翼型没有根或尖端,因此定位在整个跨度上发生。三个不同的翼型模型,一个带前缘结节,一个带有光滑的前缘和第三个具有光滑前缘和涡流发电机的三分之一,在U.S.海军学院的开放式风洞中进行了测试。通过将翼型的档位与光滑和结核连接的前缘进行比较,探讨了结节作为枝条或脊索向量抑制剂的功能。还测试了具有传统涡流发生器的平滑翼型,以与结核翼型进行比较。得到的结果表明,结核翼型在一系列攻击角度的情况下产生较少的升力和比平滑翼型的拖拽。结核翼型的劣势性能表明结节在半跨度驼背鲸鱼翅片上由Miklosovic等人进行测试。 (2004)可以与摊位的枝条进展相关联。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号