首页> 外文会议>International Flow Measurement Conference >MODELLING AND EVALUATION OF VELOCITY PROFILE EFFECTS IN CORIOLIS FLOWMETERS
【24h】

MODELLING AND EVALUATION OF VELOCITY PROFILE EFFECTS IN CORIOLIS FLOWMETERS

机译:科里奥利流量计速度谱效应的建模与评价

获取原文

摘要

Velocity profile effects represent one of the possible installation effects in flowmeters. They are perceived as variations in a flowmeter characteristic arising from different inlet velocity profiles that may be classed as: (1) developed - i.e. fully developed velocity profiles that depend on Reynolds number and are present after long straight inlet pipe sections - and (2) disturbed - i.e. disturbed velocity profiles (e.g. asymmetric or swirling flows) that result from perturbation elements, such as upstream elbows, double elbows, reducers etc. The aim of this paper is to discuss velocity profile effects in Coriolis flowmeters. The new-generation devices try to achieve accuracies better then +- 0.1 percent, and this has to be considered when evaluating the significance of particular influences on their characteristics. Although the velocity profile effect is generally not considered as problematic as, for instance, some dynamic effects (flow pulsations, mechanical vibrations, two-phase flows, etc.), some accessible experimental studies give an indication of its magnitude. For example, three commercial Coriolis flowmeters showed 'no' or in one case 'just detectable' measurement errors under disturbed flow conditions in [1] (a relatively high threshold of 0.25 percent was used for reporting a significant effect), but the output of a commercial shell-type Coriolis flowmeter was affected by up to a few percent in [2] (testing with pressurized gas). Such results are in agreement with the common findings of theoretical studies, which are the subject of this paper (see the review of references in Section 2). It has been already confirmed that velocity profile effects are expected to be negligible (but not zero) in many configurations. However, this cannot be taken as a rule for all flowmeters that work on the Coriolis measuring principle, because their sensitivity to velocity profiles depends on many constructional and operational parameters of the flowmeter. The effect of certain of these parameters will be considered for the first time in this paper. Section 2 of this paper describes some modelling concepts, which are applicable for predictions and analyses of velocity profile effects in fluid-structure interacting systems like Coriolis flowmeters. We can classify them into analytical and numerical models that are respectively based on: (1) the weight vector theory (Section 2.1) and (2) CFD simulations of fluid flow in the vibrating tube (Sections 2.2 and 2.3). Section 3 uses the weight vector approach to analyse velocity profile effects in beam-mode Coriolis flowmeters with a straight and slender measuring tube. The study is limited to fully developed flows at the inlet and discusses the influence on velocity profile effect of Reynolds number, aspect ratio of the tube, axial working mode, positions of the motion sensors and boundary conditions at the tube ends.
机译:速度概况效果代表流量计中可能的安装效果之一。它们被认为是从不同的入口速度分布产生的流量计特性的变化,这些分布可以被归类为:(1)显影 - 即依赖于雷诺数的完全开发的速度轮廓,并且在长直入口管部分之后存在 - (2)存在由扰动元件(例如上游弯头,双锯齿,减速器等)产生的受干扰的 - 即扰动的速度剖面(例如不对称或旋流),例如上游弯头,双肘部,减速器等。本文的目的是讨论科里奥利流量计中的速度曲线效应。新一代器件尝试更好地达到+ - 0.1%的准确度,并且在评估对其特征的特殊影响的重要性时必须考虑这一点。虽然速度曲线效应通常不被视为有问题,但例如,一些动态效果(流量脉动,机械振动,两相流量等),一些可接近的实验研究表明其幅度。例如,三种商用科里奥利流量计显示“禁止检测”测量误差在[1]中的干扰条件下(0.25%的相对较高的阈值用于报告显着效果),但输出商业壳型Coriolis流量计受到[2]中的百分之几(用加压气体测试)的影响。这些结果与理论研究的常见发现一致,这是本文的主题(参见第2节中的参考文献)。已经确认,在许多配置中,预计速度概况效应将忽略不计(但不是零)。然而,这不能作为在科里奥利测量原理上工作的所有流量计的规则,因为它们对速度分布的敏感性取决于流量计的许多结构和操作参数。本文首次考虑某些这些参数的效果。本文第2节介绍了一些建模概念,其适用于在流体结构相互作用系统中的流体结构中的速度曲线效应的预测和分析。我们可以将它们分为分析和数值模型,分别基于:(1)重量载体理论(第2.1节)和(2)振动管中的流体流动的CFD模拟(部分2.2和2.3)。第3部分使用重量载体方法分析具有直和细长测量管的光束模式Coriolis流量计中的速度曲线效应。该研究仅限于入口处的完全发育流程,并讨论了雷诺数,轴向工作模式的纵横比,运动传感器的位置和管端的边界条件的影响对雷诺数的速度曲线效应的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号