首页> 外文会议>International Conference on Remote Sensing for Marine and Coastal Environments >HIGH RESOLUTION COASTAL CIRCULATION: MERGING MODELS AND OCEAN COLOR DATA*
【24h】

HIGH RESOLUTION COASTAL CIRCULATION: MERGING MODELS AND OCEAN COLOR DATA*

机译:高分辨率沿海循环:合并模型和海洋颜色数据*

获取原文

摘要

Remotely-sensed ocean color provides a window into coupled biogeophysical dynamics at the surface of the coastal ocean. Satellite imagery provides synoptic, real-time measurements over large spatial scales; however, typical spatial resolution (250m – 1km) may be limiting when considering some coastal processes that evolve over much finer spatial scales (such as ~10m’s) . Futhermore, temporal resolution is generally lacking in remote sensing imagery with approximately one or two passes per day in comparison to coastal processes which occur on hourly (or less) scales. Thus, the underlying physical processes that influence the observed optical distributions are often too complex and are manifest at space and time scales that preclude full understanding from imagery alone. Alternatively, advanced numerical models of the coastal ocean applied at spatial scales of 10 to 100 m incorporate relevant coastal dynamics (such as wind, tide, and river forcing, vertical mixing, advection and dispersion), complex shorelines and bathymetry, and are able to predict coastal circulation over very short time scales throughout the entire water column. These high-resolution models are often exercised as a virtual laboratory for understanding the cause and effect between forcing and circulation. When coupled, numerical models and remotelysensed observations can provide a powerful tool to both understand and predict dynamical processes and optical patterns in coastal waters. From a military perspective, remotely-sensed ocean color data is often the only observational window on ocean processes in denied areas making the coupling of satellite imagery with numerical models all the more imperative for developing a preditive capability in such regions. Aside from a deepened understanding of coastal processes, merging numerically modeled circulation with satellite imagery can result in improvements to the modeled circulation, particularly in intertidal regions where few observations are available to quantify the land-sea interface. Once a more complete understanding of how ocean color data and modeled circulation are coupled, an appropriate data assimilation approach can be developed that will allow coastal ocean models to take full advantage of the observational information presented in the satellite imagery. SeaWIFS and MODIS satellites provide daily products of the bio-optical and SST properties for characterizing and monitoring coastal conditions (Arnone and Parsons, 2004). Advances in inter-satellite calibration and atmospheric correction have been used to provide quantitative analyses of the optical properties in coastal areas. These satellites can now be used to determine how optical characterisitics change from image to image; they provide a quantitative means for defining changes which can result from the physical forcing. Current algorithms used with these ocean color satellites are based on semianaytical approaches which use spectral changes to uncouple the inherent optical properies of absorption (total, phytoplanton, detritus and Colored dissolved organic) and backscatteirng (Lee et al. 2002). The backscattering properties are strongly associated with the particle concentration (in addition to the size , shape, index of refraction). Additionally, optical propeites such as the beam attenuation coefficient?
机译:远程感测的海洋颜色为沿海海洋表面的耦合生物果实动态提供了一个窗口。卫星图像提供大型空间尺度的概要,实时测量;然而,典型的空间分辨率(250m - 1km)可能是在考虑一些在更精细的空间尺度(例如~10m)上发展的沿海过程时的限制性。 Futhermore,时间分辨率通常缺乏遥感图像,每天大约一个或两个通过,与每小时(或更少)尺度发生的沿海过程相比。因此,影响观察到的光学分布的底层物理过程通常太复杂,并且在空间和时间尺度上表现出来,该时间尺度不能单独地从图像上充分了解。或者,在10到100米的空间尺度上施加的沿海海洋的高级数值模型包括相关的沿海动力学(如风,潮汐和河流强制,垂直混合,平流和分散),复杂的海岸线和沐浴术,并且能够在整个水柱中预测在非常短的时间尺度上的沿海循环。这些高分辨率模型通常作为虚拟实验室行使,以了解强制和循环之间的原因和效果。当耦合时,数值模型和远程态化观测可以提供强大的工具,以了解和预测沿海水域中的动态过程和光学模式。从军事角度来看,远程感应的海洋颜色数据通常是海洋过程中唯一的观测窗口,在否定区域中的唯一区域,使卫星图像与数值模型的耦合到这些区域中的预定能力更为迫切。除了深化对沿海过程的理解之外,用卫星图像合并数值模拟的循环,可能会导致建模的循环改善,特别是在跨境区域,几乎没有可用于量化陆地界面的观察。一旦更完整地了解海洋颜色数据和建模循环的耦合方式,都可以开发一个适当的数据同化方法,以允许沿海海洋模型充分利用卫星图像中提出的观测信息。 Seawifs和Modis卫星提供生物光学和SST性能的每日产品,用于表征和监测沿海条件(Arnone和Parsons,2004)。卫星间校准和大气校正的进步已被用于提供沿海地区光学性质的定量分析。现在可以使用这些卫星来确定光学特征如何如何从图像变为图像;它们提供了用于定义可能由物理强制导致的变化的定量手段。与这些海洋彩色卫星一起使用的本算法基于半年化方法,该方法使用光谱变化来耦合的吸收固有的光学适应(总,植物,植物,碎屑和彩色溶解有机)和BackscatteIrng(Lee等人。2002)。反向散射性质与颗粒浓度强烈相关(除尺寸,形状,折射率的尺寸外)。另外,诸如光束衰减系数之类的光学载体?

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号