首页> 外文会议>International Conference on Fluvial Sedimentology >Fluvial to tidal transition zone facies in the McMurray Formation (Christina River, Alberta, Canada), with emphasis on the reflection of flow intensity in bottom set architecture
【24h】

Fluvial to tidal transition zone facies in the McMurray Formation (Christina River, Alberta, Canada), with emphasis on the reflection of flow intensity in bottom set architecture

机译:河流过渡区相对于McMurray地层(Christina River,Alberta,Canada),重点是底部架构流动强度的反射

获取原文

摘要

12.1 INTRODUCTION The understanding of depositional processes and products of the fluvial to tidal transition (FTT) zone (Fig. 12.1) has grown significantly over the last 25 years (Allen, 1991; Cuevas Gozalo and De Boer, 1991; Dalrymple and Choi, 2007; Fischbein et al., 2009; Ghosh et al., 2005; Jablonski and Dalrymple, 2016; La Croix and Dashtgard, 2014; Martinius and Gowland, 2011; Martinius and Van den Berg, 2011; Sisulak and Dashtgard, 2012; Van den Berg et al., 2007). This is in part due to the realization that this is an area with a significant depositional footprint along the trajectory of a river channel. In the FTT unidirectional, freshwater (fluvial) flow interacts with the tides and the intruding salty and denser seawater. It connects to the inshore tidal zone (if present) and together they form the fluvial to marine transition (Fig. 12.1) in an estuary or a (tide-dominated) delta distributary. For a sedimentological definition, it is appropriate to include the recognition of this interaction. Consequently, the FTT zone is defined as that part of the river which lies between the landward limit of measurable effects of tidally influenced flow deceleration on fluvial cross-bedding at low river discharge, and the most seaward occurrence of a textural or structural fluvial signature related to high river discharge (cf. Van den Berg et al., 2007). In many instances, the effect of salinity changes on faunal and floral distributions in the FTT can be understood in significant detail, which supports any sedimentological interpretation. As shown by Martinius and Van den Berg (2011), some sedimentary structures point to more fluvial dominance and others to dominance of tidal processes. The simultaneous occurrence of these structures next and above each other is in fact an important characteristic of this transition zone, where the fluvial- and tide-dominated areas move up and down the depositional profile in response to short- and long-term fluvial discharge variations and the combined effect of the tidal cycles at various temporal scales. This interaction can be relatively simple but may also lead to a multifaceted hydrodynamic regime, involving salinity changes as well, resulting in a signal in the rock record that is not straightforward to interpret (Dalrymple et al., 2015; Dalrymple and Choi, 2007; Jablonski, 2012).
机译:12.1简介对潮汐转换(FTT)区的沉积过程和产品的理解(图12.1)在过去的25年里显着增加(Allen,1991; Cuevas Gozalo和De Boer,1991; Dalrymple和Choi,2007 ; Fischbein等,2009; Ghosh等,2005; Jablonski和Dalrymple,2016; La Croix和Dashtgard,2014; Martinius和Gowland,2011; Martinius和Van den Berg,2011; Susulak和Dashtgard,2012; Van Den Berg等,2007)。这部分是由于实现这是沿河道轨道轨迹具有重要沉积占地面积的区域。在FTT单向,淡水(河流)流动与潮汐和侵入咸和密集海水相互作用。它连接到Inshore潮汐区(如果存在),它们在河口或(潮汐占据)三角洲分配器中形成河流到海洋转型(图12.1)。对于沉积学定义,包括识别该相互作用是合适的。因此,FTT区定义为河流的那部分,位于河流放电下河流交叉床上用品上的可衡量流动减速的陆地限制,以及相关的纹理或结构钻兽签名的最大发生高河卸货(参见Van den Berg等,2007)。在许多情况下,盐度变化对FTT中的粪便和花卉分布的影响可以得到明显的细节,这支持任何沉积学解释。如Martinius和Van den Berg(2011年)所示,一些沉积结构指向更多氟的主导地位和其他沉积物,以拓扑流程的主导地位。这些结构下一个以上彼此同时出现实际上是这个过渡区,其中fluvial-和潮控区域上下移动以响应所述沉积剖面短期和长期河流放电偏差的一个重要特征潮汐循环在各个时间尺度上的综合作用。这种相互作用可以是相对简单的,但也可能导致多方面的流体动力学制度,涉及盐度变化,导致摇滚记录中的信号不直接解释(Dalrymple等,2015;达尔里珀尔和崔,2007; Jablonski,2012)。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号