首页> 外文会议>International Conference on Fluvial Sedimentology >Deciphering the relative importance of fluvial and tidal processes in the fluvial-marine transition
【24h】

Deciphering the relative importance of fluvial and tidal processes in the fluvial-marine transition

机译:破译氟尿和潮气过程在河海洋过渡中的相对重要性

获取原文

摘要

1.1 INTRODUCTION The interaction of tidal and river currents is a fundamental attribute of all rivers that empty into a marine basin, provided the basin is not tideless (as is essentially the case in the Mediterranean Sea and much of the Arctic Ocean; Candela, 1991; Kowalik and Proshutinski, 1994). The length of the zone of interaction is a complex function of several variables, including the coastal-plain gradient, the tidal range at the coast, and the fluvial discharge, with depth of the river playing a secondary role. A decrease in gradient causes an increase in the distance landward of the coast that tidal action can be expected, all else being equal: for example, a halving of the slope doubles the extent of tidal penetration (Fig. 1.1). An increase in the tidal range also causes tidal action to penetrate farther inland, whereas an increase in fluvial discharge decreases the tidal penetration, again all else being equal (Dyer, 1997; Nichols and Biggs, 1985). Water depth, together with channel width, also influences the upstream penetration of the tidal wave through their influence on frictional attenuation of the tide. In many systems, the landward decrease in the cross-sectional area of the channel initially causes the tidal range (and tidal-current speeds) to increase landward (i.e., a "hypersynchronous" situation; Salomon and Allen, 1983) to a location referred to as the "tidal maximum" (Dalrymple and Choi, 2007). Beyond this, friction causes the tidal range to decrease to zero at the tidal limit (Godin, 1999). Because friction is higher in shallow water, shallow systems such as braided rivers are likely to have shorter tidal-penetration distances than rivers that are deep. The end result of these various factors is that large rivers, which generally flow over low-gradient coastal plains, tend to have longer tidal-penetration distances than small rivers with steeper slopes. [Larger rivers also tend to have stronger tidal currents at their mouth because of the larger tidal prism (i.e., the tidal water flux past a point on each half tidal cycle) that is caused by the longer distance of tidal penetration (cf. Dalrymple, 2010).] The longest tidal-penetration distance documented is in the Amazon River, in which a tidal influence is detectable up to 800 km landward of the coast. However, even small to medium rivers have tidal-penetration distances of several tens to more than a hundred kilometers in low-gradient, coastal-plain settings (Dyer, 1997; A.A. Ichaso, unpublished data; Nichols and Biggs, 1985; Van den Berg et al., 2007). It follows, therefore, that a significant fraction of the coastal-zone deposits in ancient sedimentary basins should have accumulated in the tidal-fluvial transition zone.
机译:1.1引言潮流和河流的相互作用是所有河流的基本属性,即将到海上盆地中的所有河流,只要盆地并不完整(地中海和大部分北极海洋和大部分地区的案例;坎德拉,1991年; Kowalik和Proshutinski,1994)。相互作用区域的长度是几个变量的复杂功能,包括沿海平原梯度,海岸的潮汐范围以及河流放电,深度河流发挥二级作用。梯度的减小导致潮汐行动可以预期的距离增加,所有其他相等:例如,斜坡的减半加倍潮汐渗透的程度(图1.1)。潮汐范围的增加也会导致潮汐作用渗透到进一步的内陆,而河流放电的增加会降低潮流渗透率,再次相同(Dyer,1997; Nichols和Biggs,1985)。水深与信道宽度一起影响潮汐波的上游渗透到潮汐摩擦衰减的影响。在许多系统中,通道的横截面积的落地减小最初会导致潮汐范围(和潮流速度)增加陆地(即“过度同步地”情况; Salomon和Allen,1983)到所提到的位置作为“潮汐最大”(Dalrymple和Choi,2007)。除此之外,摩擦导致潮汐范围在潮汐限制(Godin,1999)时减少到零。因为浅水中的摩擦较高,所以诸如编织河等浅系的浅系可能具有比深度深度的河流更短的潮流距离。这些各种因素的最终结果是大型河流,通常流过低梯度沿海平原,往往比具有陡坡斜坡的小河流更长的潮流距离。 [较大的河流由于潮汐普遍距离较长的距离(即,每半潮周期上的点)较大的潮汐(即,潮汐水磁通),较大的河流也倾向于具有更强的潮流。 2010)。]记录的最长的潮流距离在亚马逊河中,其中潮汐影响最多可检测到800公里的海岸陆地。然而,即使是小到中河的潮流距离几十多到一千米以上的低梯度,沿海普通设置(Dyer,1997; AA Ichaso,未发表的数据; Nichols和Biggs,1985; Van den Berg等等,2007)。因此,如下,古代沉积盆地中的沿海区沉积物的大部分应积累在潮流过渡区中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号