首页> 外文会议>International Conference on Materials Structure and Micromechanics of Fracture >Fatigue crack growth rate in axial, torsional and multiaxial mode in 316L austenitic steel
【24h】

Fatigue crack growth rate in axial, torsional and multiaxial mode in 316L austenitic steel

机译:316L奥氏体钢中轴向,扭转和多轴模式下的疲劳裂纹生长速率

获取原文

摘要

Austenitic stainless steel 316L was tested at room temperature in three different cycling modes - axial tension/compression, pure torsional and multiaxial in phase mode with the same equivalent strain amplitude. Two types of hollow cylindrical specimens were used in this study. The first type of specimen with smooth surface was used for studying the mechanism of initiation of fatigue crack and for determination of fatigue life. The second type of specimen with artificial hole was used for measuring of crack growth rate. The mechanism of crack initiation was observed by scanning electron microscopy and by focused ion beam technique. Detailed observations of microstructure were done by transmission electron microscopy. The mechanism of fatigue crack initiation is following - persistent slip bands are formed and fatigue cracks initiate from them. Crack growth rate was determined from micrographs taken by light microscope during cycling. It was found that the cycling in axial mode leads to the fastest crack growth rate and the shortest fatigue lives. On the contrary, cycling in torsional mode leads to the slowest crack growth rate and the longest fatigue lives. One of probable causes of such behavior can be found in phase transformation from austenite to α' martensite which is much more intense in the case of pure torsional loading than in other modes.
机译:在三种不同的循环模式下在室温下在室温下测试奥氏体不锈钢316L - 轴向张力/压缩,纯扭转和多轴,相位模式具有相同的等效应变幅度。本研究使用了两种类型的空心圆柱形样品。具有光滑表面的第一种样品用于研究疲劳裂纹的启动机制和测定疲劳寿命。使用人造孔的第二种类型的样品用于测量裂纹生长速率。通过扫描电子显微镜和聚焦离子束技术观察裂纹引发机理。通过透射电子显微镜进行微观结构的详细观察。疲劳裂纹引发的机制是后续的 - 形成持续的滑动带,并且疲劳裂缝引发它们。在循环期间从光学显微镜拍摄的显微照片中测定裂纹生长率。发现轴向模式的循环导致最快的裂缝生长速度和最短的疲劳生活。相反,扭转模式的循环导致最慢的裂缝增长率和最长的疲劳生活。可以在从奥氏体到α'马氏体的相变的可能原因中发现这种行为的可能性之一,这在纯扭转装载的情况下比其他模式更强烈。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号