首页> 外文会议>Joint Meeting of the US Sections of the Combustion Institute >Summary of Simplified Two Time Step Method for Calculating Combustion Rates and Nitrogen Oxide Emissions for Hydrogen/Air and Hydrogen/Oxygen
【24h】

Summary of Simplified Two Time Step Method for Calculating Combustion Rates and Nitrogen Oxide Emissions for Hydrogen/Air and Hydrogen/Oxygen

机译:概述计算燃烧率和氢气和氢气/氧气燃烧速率和氮氧化物排放的两次步骤方法

获取原文

摘要

A simplified single rate expression for hydrogen combustion and nitrogen oxide production was developed. Detailed kinetics are predicted for the chemical kinetic times using the complete chemical mechanism over the entire operating space. These times are then correlated to the reactor conditions using an exponential fit. Simple first order reaction expressions are then used to find the conversion in the reactor. The method uses a two time step kinetic scheme. The first time averaged step is used at the initial times with smaller water concentrations. This gives the average chemical kinetic time as a function of initial overall fuel air ratio, temperature, and pressure. The second instantaneous step is used at higher water concentrations (>1×10{sup}(-20) moles/cc) in the mixture which gives the chemical kinetic time as a function of the instantaneous fuel and water mole concentrations, pressure and temperature (T{sub}4). The simple correlations are then compared to the turbulent mixing times to determine the limiting properties of the reaction. The NASA Glenn GLSENS kinetics code calculates the reaction rates and rate constants for each species in a kinetic scheme for finite kinetic rates. These reaction rates are used to calculate the necessary chemical kinetic times. This time is regressed over the complete initial conditions using the Excel regression routine. Chemical kinetic time equations for H{sub}2 and NO{sub}x are obtained for H{sub}2/Air fuel and for H{sub}2/O{sub}2. A similar correlation is also developed using data from NASA's Chemical Equilibrium Applications (CEA) code to determine the equilibrium temperature (T{sub}4) as a function of overall fuel/air ratio, pressure and initial temperature (T{sub}3). High values of the regression coefficient R{sup}2 are obtained.
机译:开发了一种简化的氢燃烧和氮氧化物产生的单速率表达。在整个操作空间上使用完整的化学机制预测有关化学动力学次数的详细动力学。然后,使用指数拟合,这些时间与反应器条件相关。然后使用简单的第一阶反应表达式来找到反应器中的转换。该方法使用两次步骤动力学方案。第一次平均步骤用于较小的水浓度的初始时间。这为初始总燃料空气比,温度和压力的函数提供了平均化学动力学时间。第二瞬时步骤在混合物中以较高的水浓度(> 1×10 {sup}(-20)摩尔/ cc)使用,这使得化学动力学作为瞬时燃料和水摩尔浓度,压力和温度的函数。 (t {sub} 4)。然后将简单的相关性与湍流混合时间进行比较以确定反应的限制性。 NASA Glenn Glsens动力学代码计算有限动力学率的动力学方案中每种物种的反应速率和速率常数。这些反应速率用于计算必要的化学动力学时间。此时使用Excel回归例程在完整的初始条件下回归。对于H {Sub} 2和NO {Sub} x的化学动力学时间方程是针对H {SUB} 2 /空气燃料和H {SUB} 2 / O {SUB} 2获得的。还使用来自NASA的化学平衡应用(CEA)代码的数据来开发类似的相关性,以确定作为整体燃料/空气比,压力和初始温度(T {Sub} 3)的函数的平衡温度(T {Sub} 4) 。获得回归系数R {SUP} 2的高值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号