首页> 外文会议>International Astronautical Congress >AtmoFlow - Simulating atmospheric flows on the International Space Station. Part II: Experiments and numerical simulations
【24h】

AtmoFlow - Simulating atmospheric flows on the International Space Station. Part II: Experiments and numerical simulations

机译:atmoflow - 在国际空间站上模拟大气流。 第二部分:实验和数值模拟

获取原文

摘要

The main objective of the AtmoFlow experiment is the investigation of convective flows in the spherical gap geometry that are of interest for geophysical, astrophysical and especially for atmospheric research. The main feature of AtmoFlow is its spherical geometry and aims to observe flows in thin gaps that are subjected to a central force field. Such a condition, obviously impossible to reach on ground, is achieved by simulating buoyancy driven convection through a central dielectrophoretic field in microgravity conditions e.g. on the ISS. Without losing its overall view on the complex physics, circulation in planetary atmospheres can be reduced to a simple model of the in- and outgoing energy (e.g. radiation) and rotational effects. Both input parameters are determined by the boundaries of the system. This strongly simplified assumption makes it possible to break some generic cases down to test models which can be investigated by laboratory experiments and numerical simulations. Varying differential rotation rates and temperature boundary conditions represent different types of planets. This is a very basic approach, but various open questions regarding weather, climate change and global warming can be investigated with that simplified setup. To prepare the experiment, it is necessary to determine the exact parameter space of the boundary conditions and the radius ratio, where the highest variety of different cells and global structures will most likely occur. This task is covered by a detailed numerical study and a ground-based experiment, where the lateral boundary conditions, the radius ratio, as well as the rotation are varied. Besides, the critical Rayleigh and Taylor numbers are calculated, which are important information for the lower limit of the temperature difference and the minimum rotation rate. First numerical results for the envisaged geometry are presented. We find a rich variety of typical flow patterns for radius ratio 0.7, including baroclinic wa
机译:大气压实验的主要目的是对对球形间隙几何形状进行对流流的调查,这对地球物理,天体物理尤其是大气研究感兴趣的。 Atmoflow的主要特征是其球形几何形状,旨在观察经受中枢压力场的薄隙的流动。通过在微匍匐条件下通过中央介电泳场模拟浮力驱动的对流来实现这种情况,显然无法达到地面。在ISS。在不丢失其对复杂物理学的整体视图中,行星大气中的循环可以减少到进出能量(例如辐射)和旋转效应的简单模型。两个输入参数都由系统的边界确定。这种强化的假设使得可以将一些通用案例降低到测试模型,该模型可以通过实验室实验和数值模拟来研究。不同的差分旋转速率和温度边界条件代表不同类型的行星。这是一种非常基本的方法,但有关天气,气候变化和全球变暖的各种开放问题,可以通过简化的设置来调查。为了准备实验,有必要确定边界条件的确切参数空间和半径比,其中最大的不同细胞和全局结构将会发生。该任务由一个详细的数值研究和基于地面的实验涵盖,其中横向边界条件,半径比以及旋转变化。此外,计算临界瑞利和泰勒号码,这是对温差和最小旋转速率下限的重要信息。介绍了设想几何形状的首要数值结果。我们发现丰富的半径比为0.7的典型流动模式,包括条状瓦片

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号