首页> 外文会议>International Astronautical Congress >DESIGN, SIMULATION AND ANALYSIS OF CARBON-FIBER COMPOSITE AND ALUMINUM HONEYCOMB ROCKET FINS USING FLUID-STRUCTURE INTERACTION FOR FLUTTER ANALYSIS
【24h】

DESIGN, SIMULATION AND ANALYSIS OF CARBON-FIBER COMPOSITE AND ALUMINUM HONEYCOMB ROCKET FINS USING FLUID-STRUCTURE INTERACTION FOR FLUTTER ANALYSIS

机译:碳纤维复合材料和铝蜂窝火箭翅片使用流体结构相互作用的设计,仿真与分析扑振分析

获取原文

摘要

A sounding rocket's fins are essential to its safe and stable ascent, yet the same fins can add considerable weight to the rocket and are susceptible to destructive fin flutter. Therefore, it was necessary to create a fin which would minimize weight but still be able to resist aerodynamic forces. This fin was tested on a sounding rocket travelling to an altitude of 3 kilometers at Mach 0.83. The final fin was designed with an aluminum honeycomb core coated with sheets of carbon-fiber, bonded to the core by wet manual layup. The layup sequence was designed using ANSYS composite Prep-Post to determine the weight, the final manufacturing procedure, and the mechanical properties of the fin. To successfully analyze the fins, a coupled fluid-structure interaction to investigate the flutter response at the design speed was used. This investigation was carried out to predict the efficiency and reliability of the newly designed fin when subjected to aerodynamic loads. This study shows the vibration response of the fin under aerodynamic forces and will provide design validation. Computational fluid dynamics analysis was conducted using ANSYS FLUENT to provide the aerodynamic load data, and this data was coupled with ANSYS Mechanical for the flutter and finite element analysis. The results of this project will allow for more efficient design of aerodynamic surfaces which use both metal and carbon-fiber composites.
机译:发声火箭的翅片对于安全稳定的上升至关重要,但相同的翅片可以为火箭增加相当大的重量,并且容易受到破坏性翅片的影响。因此,有必要创建一个最小化重量但仍然能够抵抗空气动力的翅片。该翅片在探测火箭上进行测试,在0.83的Mach 0.83的Mach Mach的海拔高度为3公里。最终翅片采用涂有碳纤维片材的铝蜂窝芯设计,通过湿手动叠层粘合到核心。使用ANSYS综合预备柱设计了替换序列以确定翅片的重量,最终制造程序和机械性能。为了成功地分析翅片,使用耦合的流体结构相互作用,以研究设计速度的颤动响应。进行了该调查,以预测当受到空气动力载荷时新设计的鳍的效率和可靠性。本研究显示了空气动力下鳍片的振动响应,并将提供设计验证。使用SNSYS流畅的计算流体动力学分析以提供空气动力学负载数据,并且该数据与用于扑振和有限元分析的ANSYS机械连接。该项目的结果将允许更有效地设计使用金属和碳纤维复合材料的空气动力学表面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号