首页> 外文会议>International Astronautical Congress >SPACE EXPLORATION SYMPOSIUM (A3) Moon Exploration - Part 1 (2A):LUNAR LASER RANGING RETROREFLECTOR ARRAYS FOR THE 21ST CENTURY: HISTORY,SCIENCE, TECHNOLOGY AND SCIENCE
【24h】

SPACE EXPLORATION SYMPOSIUM (A3) Moon Exploration - Part 1 (2A):LUNAR LASER RANGING RETROREFLECTOR ARRAYS FOR THE 21ST CENTURY: HISTORY,SCIENCE, TECHNOLOGY AND SCIENCE

机译:太空勘探研讨会(A3)月亮勘探 - 第1部分(2A):月球激光测距21世纪的逆向反射阵列:历史,科学,技术和科学

获取原文

摘要

Lunar Laser Ranging (LLR) to the Apollo retroreflectors on moon over the past four decades has provided some of the best tests of General Relativity and Gravitation. The history, technology and scientific accomplishments of the Lunar Laser Ranging Retroreflectors (LLRR) deployed during the Apollo 11, 14 and 15 missions will be briefly described. While the Apollo retroreflectors are still operating, over the past four decades the technology deployed on the ground stations has improved the ranging accuracy for a single photo-electron by more than a factor of 200. Thus the retroreflector arrays deployed during the Apollo missions now limit the single photo-electron range accuracy. The new science that can be accomplished by a next generation retroreflector that supports 1 mm ranging will be described. Then background and status of the Lunar Laser Ranging Retroreflector Array for the 21st Century (LLRRA-21) being developed at the University of Maryland, College Park in collaboration with Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati and Agenzia Spaziale Italiana, Italy and Institute for Geodesy, Leibniz University Hannover, Germany will be addressed. This will particularly involve the thermal/optical simulation that has been developed to optimize the performance of the solid CCRs in the harsh environment of the lunar surface. In addition, the recent simulation of the thermal/optical performance of the Apollo arrays will be described. In particular, this will address the observations of the APOLLO station during the 2010 eclipse, during which the change in solar illumination changes at a rate that is comparable to the time constants of the CCRs and the panel. The latter allows a detailed investigation into the behavior of the coatings and housing of the Apollo arrays.
机译:过去四十年来月球上的月球逆向反射器的月球激光测距(LLR)提供了一般相对论和引力的一些最佳测试。在Apolo 11,14和15任务期间部署的月球激光测距仪(LLRR)的历史,技术和科学成就将简要描述。虽然阿波罗回射器仍在运行,在过去的四个十年部署在地面站的技术已通过改进单个光电子的测距精度超过期间现在阿波罗任务限制部署200。因此后向反射器阵列的一个因素单张照片电子范围精度。可以描述可以通过支持1mm测距的下一代射流器来实现的新科学。然后在与Istituto Nazionale di Fisica Unthere Labori Laboratori Nazioni di Frascati和Agenzia Spaziai di Frascati和Agenzia Spaziai di Frascati和Italiala,Istituto Nazionale di Frascati和Agenzia Spaziale Italiana,Istituto Nazionale Di Frascati和Italiana,意大利和学院合作开发了21世纪(LLRRA-21)对于德国汉诺威林德尼兹大学,将得到解决。这将特别涉及已经开发出的热/光学模拟,以优化了在月球表面的恶劣环境中优化固体CCR的性能。另外,将描述最近对Apollo阵列的热/光学性能的模拟。特别是,这将解决2010年Eclipse期间Apollo站的观察,在此期间太阳照射的变化以与CCR和面板的时间常数相当的速率。后者允许详细调查Apollo阵列的涂层和外壳的行为。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号