首页> 外文会议>International Astronautical Congress >DYNAMIC/CONTROL INTERACTIONS BETWEEN FLEXIBLE ORBITING SPACE-ROBOT DURING GRASPING, DOCKING AND POST-DOCKING MANEUVERS
【24h】

DYNAMIC/CONTROL INTERACTIONS BETWEEN FLEXIBLE ORBITING SPACE-ROBOT DURING GRASPING, DOCKING AND POST-DOCKING MANEUVERS

机译:掌握,对接和对接后的运动过程中柔性轨道空间机器人之间的动态/控制相互作用

获取原文

摘要

Robotic systems are expected to play an increasingly important role in future space activities, such as repairing, upgrading, refuelling, and re-orbiting spacecraft. These technologies could potentially extend the life of satellites, enhance the capability of space systems, reduce the operation costs, and clean up the increasing space debris. Recent proposals for missions involving the use of space manipulators and/or automated transfer vehicles are presented as a solution for a lot of problems which now affect the procedures and the performance of the in-orbit space systems. Other projects involving space manipulators have been developed by DARPA aiming to demonstrate several satellite servicing operations and technologies including rendez-vous, proximity operations and station-keeping, capture, docking, fluid transfer (specifically, "hydrazine"), and ORU (Orbit Replaceable Unit) transfer. Of course the dynamic coupling between the manipulator and its base mounting flexible solar arrays is very difficult to model. Furthermore the motion planning of a space robots is usually much more complicated than the motion planning of fixed-base manipulators. In this paper first of all the authors present a mixed NE/EL formulation suitable for synthesizing optimal control strategies during the deploying manoeuvres of robotic arms mounted on flexible orbiting platform (i.e. the chaser). Then two new control strategies able compensate the flexibility excitations of the chaser satellite solar panels during the capturing of a flexible target spacecraft with the use of two robotic arms are presented and applied to a grasping manoeuver. The mission is here divided into three main phases: the approaching, the docking and the post-grasping phase. Several numerical examples will complete the work.
机译:预计机器人系统将在未来的空间活动中发挥越来越重要的作用,例如修理,升级,加油和重新轨道航天器。这些技术可能会延长卫星的寿命,增强空间系统的能力,降低运营成本,并清理不断增加的空间碎片。最近涉及使用空间操纵器和/或自动转移车辆的任务的提案作为许多问题的解决方案,现在影响了轨道空间系统的程序和性能。涉及太空机械手的其他项目是由DARPA开发的,旨在展示几种卫星维修操作和技术,包括Rendez-Vous,靠近操作和站 - 保持,捕获,对接,流体转移(特别是“肼”)和ORU(轨道单位)转移。当然,操纵器和其基座安装柔性太阳阵列之间的动态耦合非常难以模拟。此外,空间机器人的运动规划通常比固定基础机械手的运动规划更复杂。在本文中,首先提交了一个混合的NE / EL配方,适用于在安装在柔性轨道平台(即追踪者)的机器人臂的部署演习期间合成最佳控制策略。然后,两个新的控制策略能够补偿追踪卫星太阳能电池板在捕获柔性目标航天器期间的灵活激励,使用两个机器人臂,并施加到抓握操作。该任务在这里分为三个主要阶段:接近,对接和掌握后阶段。几个数字示例将完成工作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号