首页> 外文会议>International astronautical congress >DYNAMIC/CONTROL INTERACTIONS BETWEEN FLEXIBLE ORBITING SPACE-ROBOT DURING GRASPING, DOCKING AND POST-DOCKING MANEUVERS
【24h】

DYNAMIC/CONTROL INTERACTIONS BETWEEN FLEXIBLE ORBITING SPACE-ROBOT DURING GRASPING, DOCKING AND POST-DOCKING MANEUVERS

机译:抓地,对接和对接后操纵过程中灵活的空间机器人之间的动力/控制相互作用

获取原文

摘要

Robotic systems are expected to play an increasingly important role in future space activities, such as repairing, upgrading, refuelling, and re-orbiting spacecraft. These technologies could potentially extend the life of satellites, enhance the capability of space systems, reduce the operation costs, and clean up the increasing space debris. Recent proposals for missions involving the use of space manipulators and/or automated transfer vehicles are presented as a solution for a lot of problems which now affect the procedures and the performance of the in-orbit space systems. Other projects involving space manipulators have been developed by DARPA aiming to demonstrate several satellite servicing operations and technologies including rendez-vous, proximity operations and station-keeping, capture, docking, fluid transfer (specifically, "hydrazine"), and ORU (Orbit Replaceable Unit) transfer. Of course the dynamic coupling between the manipulator and its base mounting flexible solar arrays is very difficult to model. Furthermore the motion planning of a space robots is usually much more complicated than the motion planning of fixed-base manipulators. In this paper first of all the authors present a mixed NE/EL formulation suitable for synthesizing optimal control strategies during the deploying manoeuvres of robotic arms mounted on flexible orbiting platform (i.e. the chaser). Then two new control strategies able compensate the flexibility excitations of the chaser satellite solar panels during the capturing of a flexible target spacecraft with the use of two robotic arms are presented and applied to a grasping manoeuver. The mission is here divided into three main phases: the approaching, the docking and the post-grasping phase. Several numerical examples will complete the work.
机译:机器人系统有望在未来的太空活动中发挥越来越重要的作用,例如维修,升级,加油和重新轨道飞行器。这些技术有可能延长卫星的寿命,增强空间系统的能力,降低运行成本,并清理不断增加的空间碎片。作为涉及许多问题的解决方案,提出了有关使用空间操纵器和/或自动转运车的近期任务建议,这些问题现在影响在轨空间系统的程序和性能。 DARPA还开发了其他涉及空间操纵器的项目,旨在展示几种卫星服务操作和技术,包括会合,近距离操作和站位保持,捕获,对接,流体传输(特别是“肼”)和ORU(可更换轨道)单位)转移。当然,操纵器与其基座安装的柔性太阳能电池阵列之间的动态耦合很难建模。此外,空间机器人的运动计划通常比固定基座机械手的运动计划要复杂得多。在本文中,第一作者首先提出了一种混合NE / EL公式,适用于在安装在柔性轨道平台(即追赶者)上的机械臂的部署演习中合成最佳控制策略。然后,提出了两种新的控制策略,它们可以利用两个机械臂在捕获挠性目标航天器期间补偿追赶者卫星太阳能电池板的挠性激励,并将其应用于抓地机动。这里的任务分为三个主要阶段:接近,对接和后抓取阶段。几个数字示例将完成工作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号