首页> 外文会议>International Astronautical Congress >DYNAMIC SINGULAR MODELING, ROBUST FUZZY SLIDING CONTROL AND FLEXIBLE VIBRATION ACTIVE SUPPRESSION FOR FREE-FLOATING SPACE ROBOT WITH FLEXIBLE JOINT AND FLEXIBLE MANIPULATOR
【24h】

DYNAMIC SINGULAR MODELING, ROBUST FUZZY SLIDING CONTROL AND FLEXIBLE VIBRATION ACTIVE SUPPRESSION FOR FREE-FLOATING SPACE ROBOT WITH FLEXIBLE JOINT AND FLEXIBLE MANIPULATOR

机译:具有柔性接头和柔性机械手的自由浮动空间机器人动态奇异建模,鲁棒模糊滑动控制和灵活振动主动抑制

获取原文

摘要

Nowadays, most of the researches on the space robot system are based on the assumption of that the system is a multiple rigid body systems. But in the space's actual applications, the joint between the manipulator and the rotor is flexible. And the flexible manipulator has been more widely used for reducing the system's quality. So, the space robot system is a rigid-flexible coupling system actually. The flexibility of the space robot's structure can reduce the system's weight, reduce the energy consumption, and reduce the damage to the space robot. But the flexible deformation and vibration will influence system's control accuracy and stability. As the space robot technology developing, the coupling effect between the large displacement's rigid motion and the small displacement's flexible motion of the flexible manipulator and flexible joint can not be ignored. But because of the free-floating space robot system's nonlinear and strong coupling, the research on the space robot system with flexible joint and flexible manipulator is still very rare. Based on the above discussion, in this paper, the impacts both of the flexible manipulator and the flexible joints on free-floating space robot system are considered. The dynamics modeling, motion control and flexible vibration suppression problem of free-floating space robot with flexible manipulator and flexible joints are discussed. Firstly, the flexible joint is simplified as a "rotor-torsional spring system". According to system's momentum conservation, angular momentum conservation and Lagrange-Assumed mode method, the dynamic equations of the system are established. Then, based on singular perturbation method, the system is decomposed into a slow subsystem and two fast subsystems. Where, the slow subsystem represents the rigid-joint and rigid-link system's rigid motion, the fast 1 subsystem represented the system's flexible vibration caused by flexible-joint, and the fast 1 subsystem represented the system's flexible vibration caused by flexible-link. Then three control methods are proposed for these three subsystems: For the slow subsystem, a saturation robust fuzzy sliding controller is proposed to compensate the influences of the uncertain parameters, rotation angles' errors and the external disturbance, and thus realize the asymptotic tracking of the system desired trajectory; for the fast 1 subsystem, a velocity difference feedback controller is used to suppress the flexible vibration caused by flexible-joint; for the fast 2 subsystem, a linear quadric regulator is used to suppress the flexible vibration caused by flexible-link. Finally, the simulation results prove the controller's efficiency.
机译:如今,空间机器人系统的大多数研究基于该系统是系统是多个刚体系统的假设。但在空间的实际应用中,操纵器和转子之间的关节是柔性的。柔性机械手更广泛地用于降低系统的质量。因此,空间机器人系统实际上是一个刚性的耦合系统。空间机器人结构的灵活性可以降低系统的重量,降低能量消耗,并降低空间机器人的损坏。但柔性变形和振动将影响系统的控制精度和稳定性。随着空间机器人技术的开发,大型位移刚性运动与小位移之间的耦合效果不能忽略柔性机械手和柔性接头的柔性运动。但由于自由浮动空间机器人系统的非线性和强耦合,柔性关节和柔性机械手的空间机器人系统的研究仍然非常罕见。基于上述讨论,在本文中,考虑了柔性机械手和柔性接头上的冲击在自由浮动空间机器人系统中。讨论了具有柔性操纵器和柔性接头的自由浮动空间机器人的动态建模,运动控制和柔性振动抑制问题。首先,柔性接头被简化为“转子扭转弹簧系统”。根据系统的势头保护,角动量保守和拉格朗日假定模式方法,建立了系统的动态方程。然后,基于奇异扰动方法,系统被分解成慢速子系统和两个快速子系统。在哪里,慢性子系统代表刚性关节和刚性连杆系统的刚性运动,快速的1个子系统代表了由柔性关节引起的系统柔性振动,并且快速的1个子系统表示由柔性连杆引起的系统柔性振动。然后提出了这三个子系统的三种控制方法:对于慢速子系统,提出了一种饱和稳健的模糊滑动控制器,以补偿不确定参数,旋转角度误差和外部干扰的影响,从而实现了渐近跟踪的影响系统所需的轨迹;对于快速的1子系统,速度差反馈控制器用于抑制柔性关节引起的柔性振动;对于快速的2子系统,线性四向稳压器用于抑制灵活连杆引起的柔性振动。最后,仿真结果证明了控制器的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号