首页> 外文会议>Workshop on Geothermal Reservoir Engineering >COUPLED GEOMECHANICAL AND REACTIVE GEOCHEMICAL SIMULATIONS FOR FLUID AND HEAT FLOW IN ENHANCED GEOTHERMAL RESERVOIRS
【24h】

COUPLED GEOMECHANICAL AND REACTIVE GEOCHEMICAL SIMULATIONS FOR FLUID AND HEAT FLOW IN ENHANCED GEOTHERMAL RESERVOIRS

机译:增强地热流耦合的地质力学与反应地球化学模拟,加强地热储层

获取原文

摘要

A major concern in development of fractured reservoirs in Enhanced Geothermal Systems (EGS) is to achieve and maintain adequate injectivity, while avoiding short-circuiting flow paths. The injection performance and flow paths are dominated by fracture rock permeability. The evolution of fracture permeability can be made by change in temperature or pressure induced rock deformation and geochemical reaction. Especially in fractured media, the change of fracture apertures due to geomechanical deformation and mineral precipitation/dissolution could have a major impact on reservoir long-term performance. A coupled thermal-hydrological-mechanical-chemical (THMC) model is in general necessary to examine the reservoir behavior in EGS. This paper presents a numerical model, TOUGH2-EGS, for simulating coupled THMC processes in enhanced geothermal reservoirs. This simulator is built by coupling mean stress calculation and reactive geochemistry into the existing framework of TOUGH2 (Pruess et al., 1999), a well-established numerical simulator for geothermal reservoir simulation. The geomechanical model is fully-coupled as mean stress equations, which are solved simultaneously with fluid and heat flow equations. The flow velocity and phase saturations are used for reactive geochemical transport simulation after solution of the flow and heat equations in order to sequentially couple reactive geochemistry at each time step. The fractured medium is represented by multi interacting continua (MINC) model in the simulations. We perform coupled THMC simulations to examine a prototypical EGS reservoir for fracture aperture change at the vicinity of the injection well. The results demonstrate the strong influence of temperature-induced rock deformation effects in the short-term and intermediate- and long-term influence of chemical effects. It is observed that the fracture enhancement by thermal-mechanical effect can be counteracted by the precipitation of minerals, initially dissolved into the low temperature injected water. We conclude that the temperature and chemical composition of injected water can be modified to improve reservoir performance by maintaining or even enhancing fracture network under both geomechanical and reactive geochemical effects.
机译:在增强型地热系统(EGS)裂缝性油藏的开发主要关心的是实现和保持足够的注入,同时避免短路的流动路径。喷射性能和流动路径由断裂岩石渗透率支配。裂缝渗透率的演变可以通过温度或压力诱导的岩石变形和地球化学反应变化来制备。特别是在裂隙介质,断裂孔由于地质力学变形和矿物沉淀/溶解的变化可能对储层长期性能产生重大影响。甲耦合热水文 - 机械 - 化学(THMC)模型是通常需要研究在EGS贮存行为。本文提出了一种数学模型,TOUGH2-EGS,用于在增强型地热储层模拟耦合THMC过程。这个模拟器是由平均应力计算和无功地球化学耦合到TOUGH2的现有框架内置(Pruess等人,1999),用于地热储层模拟行之有效的数值模拟器。地质力学模型被完全耦合作为平均应力方程,其与流体和热流方程联立求解。流速和相饱和度在每个时间步长,以便在流动和热解方程依次耦合反应地球化学后用于反应性地球化学传输仿真。断裂介质通过在模拟多相互作用持续状态(MINC)模型表示。我们进行耦合THMC仿真,以在注射的附近检查骨折孔径变化原型EGS储槽井。结果表明在短期和化学效应中期和长期的影响,温度引起的岩石变形效果的强大影响力。据观察,通过热 - 机械效应的骨折增强可以通过矿物质的沉淀,最初溶解到低温度来抵消注入的水。我们的结论是温度和注入水的化学成分可以被修饰以提高通过保持或甚至两者下地质力学和无功地球化学效果增强裂缝网络油藏性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号