首页> 外文会议>International Congress of Theoretical and Applied Mechanics >Simulation of initiation, transport, and deposition of granular avalanches: Current progress and future challenges
【24h】

Simulation of initiation, transport, and deposition of granular avalanches: Current progress and future challenges

机译:粒度雪崩的启动,运输和沉积的模拟:当前的进展和未来挑战

获取原文

摘要

Since 1989 models to route debris flows and avalanches for hazards mitigation have been constructed using the seminal work of Savage and Hutter. With this approach a Saint Venant model for wet or dry granular flow is constructed by depth integrating equations for mass and momentum conservation, evaluating stress using bulk mixture values and a Coulomb failure criterion. Such models rely on just three forces to determine whether motion will occur: the force giving downslope acceleration, drag along the bed during flow, and the stress gradients derived from variations in thickness of the flow. With this construction most avalanche models simply begin with a force imbalance set large enough to reproduce the runout and deposits observed. However research into granular flow mechanics has advanced our knowledge considerably in recent years, allowing construction of a new and more powerful class of models that incorporate the effects of changes in internal structure in the flow, and explicitly include phenomenon such as fluid-solid coupling during rapid deformation of saturated granular mixtures. The defining feature of these more sophisticated models is that they can evolve from a stable stress state into an unstable state such that, given certain conditions, an initially stable rock or soil masscanbegin to creep or deform slowly well before it eventually accelerates rapidly andflows downhill. The contrast between simple and sophisticated models is illustrated by comparison of a simple model for an estimated rockfall hazard in California using a Savage and Hutter approach with a sophisticated, fully coupled fluid-solid model that successfully simulated initiationand transport of experimental debris flows without arbitrarily adjusting any model parameters.
机译:自1989年以来,通过野蛮的野蛮和鼠尾的开创性的工作,建造了瓦砾的碎片流量和刺伤的雪崩。通过这种方法,用于湿颗粒流动的圣腔模型通过深度积分来构造质量和动量保守的方程,使用块状混合物值和库仑故障标准来评估应力。这些模型仅依赖于三个力来确定是否会发生运动:将下坡加速的力,在流动期间沿着床拖动,并且从流动厚度的变化导出的应力梯度。利用这种建筑,大多数雪崩模型都简单地以足够大的力的不平衡设置,以重现观察到的跳动和存款。然而,近年来对粒状流动力学的研究具有大大提升了我们的知识,允许建造一种新的和更强大的模型,该模型纳入了流动中内部结构变化的影响,并明确地包括诸如流体固体耦合等现象饱和颗粒混合物的快速变形。这些更复杂的模型的定义特征是它们可以从稳定的应力状态进化到不稳定的状态,使得给定某些条件,最初稳定的岩石或土壤masscanbegin在最终加速下迅速加速,初始稳定的岩石或土壤masscanbegin迅速迅速加速。简单和复杂模型之间的对比度通过比较加利福尼亚州的估计岩石危险的简单模型,利用具有复杂的完全耦合的流体固体模型的储野和旋风方法,以成功模拟了实验碎片流动的发起,而不会随意调整任何模型参数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号