首页> 外文会议>Biennial ASME Conference on Engineering Systems Design and Analysis >MULTI-OBJECTIVE OPTIMISATION OF HERRINGBONE GROOVED GAS BEARINGS SUPPORTING A HIGH SPEED ROTOR, TAKING INTO ACCOUNT RAREFIED GAS AND REAL GAS EFFECTS
【24h】

MULTI-OBJECTIVE OPTIMISATION OF HERRINGBONE GROOVED GAS BEARINGS SUPPORTING A HIGH SPEED ROTOR, TAKING INTO ACCOUNT RAREFIED GAS AND REAL GAS EFFECTS

机译:具有支撑高速转子的人字形沟槽气体轴承的多目标优化,考虑到稀薄的气体和真实气体效应

获取原文

摘要

Currently the herringbone grooved journal bearing (HGJB) has applications in the domain of small, low power energy related applications, where high rotational speeds are required for reaching reasonable efficiency and where standard oil lubricated bearings are limited or even unable to operate over the life time required. Furthermore the presence of oil requires auxiliary control systems reducing the overall system efficiency and reliability. High-speed rotors running in hermetic units processing refrigerant vapor require the bearings to operate with this same gas at thermodynamic conditions that are potentially very close to the saturation curve. In this region the usually applied perfect gas theory does not yield valid results when applied to the Reynolds-lubrication equation. Furthermore, depending on the processed gas and its thermodynamic condition, the Knudsen number may reach values where it is advisable to take gas rarefaction effects into account. In applications where the rotor is heavily loaded in terms of mass and inertia, the bearing design highly affects the dynamic stability of the rotor. In order to reach good stability margins, the bearing geometry tends towards low clearances leading to higher power losses. It has to be noted that bearing losses not only deteriorate the overall efficiency, but also as the unit size are getting smaller and smaller, cooling becomes an issue. The narrow groove theory (NGT) is modified in order to take into account the rarefied gas as well as the real gas effects depending on the thermodynamic and physical properties of the processed gas and on its thermodynamic state. The bearing module implementing the modified narrow groove theory allows calculating the stiffness and the damping matrices for a given bearing geometry. It is then linked to a rotor dynamic model that enables to calculate the critical speeds and the corresponding dynamic stability for a given rotor supported on herringbone grooved dynamic gas bearings. The latter module is linked to a multi-objective optimizer based on evolutionary algorithms. In this paper the evolutionary optimizer is used for two objectives: maximizing the stability margin and minimizing the bearing power loss. The optimizer yields in a Pareto curve representing a family of optimum solutions. One has the choice between a solution with a high stability margin but with high bearing losses to get dissipated or vice versa. A low power rotor for a refrigerant gas process illustrates the optimizing procedure discussed in this paper.
机译:目前,人字形槽轴颈轴承(HGJB)在小型,低功耗能源相关的应用中,都需要达到合理的效率和地方标准的油润滑轴承有限,甚至无法生活的时间工作在高转速域的应用必需的。此外的油的存在需要辅助控制系统降低了整个系统的效率和可靠性。高速转子在密封单元的处理的制冷剂蒸气所需要的轴承在有潜在非常接近的饱和曲线的热力学条件与此相同的气体来操作运行。在这个区域,当应用到雷诺方程式润滑的通常应用于理想气体的理论并没有得到有效的结果。此外,取决于所处理的气体和其热力学条件,Knudsen数可以其中可取的是采取气体稀薄的效果考虑在内达到的值。在其中转子是重度负载的质量和惯性方面的应用中,轴承的设计高度影响转子的动态稳定性。为了达到良好的稳定裕度,轴承几何向低间隙,从而导致更高的功率损耗趋向。它必须注意的是,轴承损失不仅恶化的整体效率,而且还作为单位尺寸越来越小,冷却成为问题。窄槽理论(NGT),以考虑到稀薄气体以及根据所处理的气体的热力学和物理性能和热力学状态的实际气体的影响被修改。轴承模块执行所述修改的窄槽理论允许计算刚度和对于给定的轴承的几何形状的阻尼矩阵。然后,它被连接到一个转子动态模型,使计算临界转速和用于支撑在人字给定的转子相应的动态稳定性开槽动态气体轴承。后者模块链接到基于演化算法的多目标优化器。在本文中的进化优化用于两个目标:最大化的稳定裕度和最小化轴承功率损耗。在帕累托曲线优化收益率代表一个家庭的最佳解决方案。一个具有高稳定性余量的溶液之间但具有高的轴承损失得到消散,或反之亦然的选择。低功率转子制冷剂气体的方法示出了在本文所讨论的优化过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号