首页> 外文会议>Computational Aeroacoustics Workshop on Benchmark Problems >COMPUTATION OF AEOLIAN TONE NOISE FROM TWIN CYLINDERS BY USING GRID-OPTIMIZED DISPERSION-RELATION-PRESERVING SCHEMES WITH IMMERSED SURFACE DIPOLE MODEL
【24h】

COMPUTATION OF AEOLIAN TONE NOISE FROM TWIN CYLINDERS BY USING GRID-OPTIMIZED DISPERSION-RELATION-PRESERVING SCHEMES WITH IMMERSED SURFACE DIPOLE MODEL

机译:采用浸渍表面偶极模型的电网优化的分散关系方案计算双缸中的天气色调噪声

获取原文

摘要

Grid-Optimized Dispersion-Relation-Preserving (GODRP) schemes are used for the computation of category 5, problem 1 in 4th CAA Workshop. Tarn's DRP scheme is implemented only on a uniform Cartesian grid while practical problems in aeroacoustics are seldom confined to uniform Cartesian geometry, with the associated computational grids usually being non-uniform or curvilinear. The GODRP schemes have been developed with grid-optimization algorithm to make finite difference equations possess the same dispersion relations as the corresponding partial differential equations on general geometries. Acoustic/viscous splitting techniques with immersed surface dipole model (ISDM) are utilized to solve the sound generation and propagation in viscous, low-Mach number flows for which direct computation of the aerodynamic noise remains difficult because of the large computing resources, the expensive cost and physical/numerical issues inherent in CAA. The ISDM is recently developed for the efficient computation of aerodynamic noise generation and propagation in low Mach number flows in which dipole source, originating from unsteady pressure fluctuation on a solid surface, is known to be more efficient than quadrupole sources. The multi-scale overset grid technique is also applied to resolve the complex geometries. Through the illustrative application to the benchmark problem, it will be shown that the current methods can broaden the application area of computational aeroacoustic techniques to practical aeroacoustic phenomena, enhancing both the speed and accuracy of the computation.
机译:网格优化的色散 - 关系保留(GODRP)方案用于计算第5类,第4类问题1。塔恩的DRP方案仅在均匀的笛卡尔电网上实施,而空气声学中的实际问题很少被限制在均匀的笛卡尔几何形状中,并且相关的计算网格通常是不均匀或曲线的。 GODRP方案已经采用电网优化算法开发,使有限差分方程具有与一般几何形状上相应的局部微分方程相同的色散关系。具有浸入表面偶极模型(ISDM)的声学/粘性分裂技术用于解决粘性的声音产生和传播,其在电动机噪声的直接计算由于计算资源大,成本昂贵和CAA中固有的身体/数值问题。最近,ISDM最近开发用于有效计算空气动力噪声产生和低马赫数流动中的传播,其中偶极源源自固体表面上的不稳定压力波动,是比四极源更有效。多尺寸监督电网技术也适用于解决复杂的几何形状。通过说明性应用于基准问题,将表明,目前的方法可以将计算空气声学技术扩大到实际的气动声学现象,增强计算的速度和准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号