首页> 外文会议>International Symposium on Air Breathing Engines >PERFORMANCE ESTIMATES OF A PULSE DETONATION ENGINE
【24h】

PERFORMANCE ESTIMATES OF A PULSE DETONATION ENGINE

机译:脉冲爆震引擎的性能估计

获取原文

摘要

Computational and experimental investigations of performance are reported for a Pulsed Detonation Engine (PDE) under cyclic operation using hydrogen-air mixtures. Simulations are performed for two geometry configurations to study how internal geometry influences performance of a PDE. The computational method simulates all the processes of the PDE cycle (fill, Deflagration to Detonation Initiation (DDT), propagation, blowdown and purge). Experiments are performed to validate simulation of the PDE cycle processes. Experimental measurements include DDT and blowdown visualizations, and dynamic pressure measurements. The results yield important insights into performance estimations of a PDE tube operating in a continuous cycle. Comparison of experimental and computational flow and scalar field visualizations show good agreement in cycle process time scales. Overall, there is good agreement between the numerical predictions and available experimental data on thrust generated by an ideal tube PDE. The predicted decrease of ~30% in the fuel-specific impulse (Ispf) for the benchmark tube when compared to the Ispf of an ideal tube is attributed to nonuniformities in the mixture composition, pressure drop resulting from internal geometry (DDT obstacles and a fuel-air mixing element), and backflows in the valveless benchmark tube due to a compression wave propagating into the upstream geometry. The effect of DDT-promoting obstacles on the fuel-specific impulse (Ispf) is estimated to be 16% for the H2-air benchmark tube with ten, 0.43 blockage ratio obstacles.
机译:据报道,使用氢气混合物在循环操作下进行脉冲爆炸发动机(PDE)的计算和实验研究。对两个几何配置进行模拟,以研究内部几何形状如何影响PDE的性能。计算方法模拟PDE循环的所有过程(填充,爆燃到爆炸发起(DDT),传播,排污和清除)。进行实验以验证PDE循环过程的模拟。实验测量包括DDT和排污可视化和动态压力测量。结果对连续循环运行的PDE管的性能估计产生了重要的见解。实验和计算流程和标量场可视化的比较在循环过程时间尺度中显示出良好的一致性。总体而言,在理想管PDE产生的推力上的数值预测和可用实验数据之间存在良好的一致性。与理想管的ISPF相比,基准管的燃料特异性脉冲(ISPF)预测降低〜30%归因于混合物组合物中的不均匀性,内部几何形状产生的压降(DDT障碍物和燃料 - 用于混合元件),并且由于传播到上游几何形状的压缩波而在Valveless基准管中的回流。 DDT促进障碍物对燃料特异性脉冲(ISPF)的影响估计为H2 - 空气基准管的16%,堵塞0.43封闭比障碍物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号