首页> 外文会议>International Conference on Composite Materials >STRUCTURE-PROCESS-PROPERTY RELATIONSHIP OF EXFOLIATED GRAPHITE NANOPLATELET/POLY(LACTIC ACID) COMPOSITE FILMS
【24h】

STRUCTURE-PROCESS-PROPERTY RELATIONSHIP OF EXFOLIATED GRAPHITE NANOPLATELET/POLY(LACTIC ACID) COMPOSITE FILMS

机译:剥落石墨纳米克型/聚(乳酸)复合膜的结构 - 处理 - 性能关系

获取原文

摘要

Conductive films have many applications including electromagnetic shielding, photovoltaics, gas sensors, and more [1]. Recently, a substantial amount of work has been done with carbon nanotubes (CNT) or CNT buckypaper (BP)/thermosetting resin [2] composite films replacing more traditional metallic fillers due to metal's high density, cost, and susceptibility to corrosion of metals [1]. Incorporation of CNT into polymer matrices is difficult due to the CNT's strong van der Waals interactions and high surface area [3] and the one dimensional structure limits the two dimensional in-plane conductivity of the composite films. However, BP is a dense network or mat of CNT [2, 4] and is extremely desirable in creating highly conductive films due to the abundance of nanotube pathways. BP is also a desirable alternative to CNT due to its ability to be handled like a more traditional carbon fiber mat [3]. However, the dense network of CNT that BP is comprised of makes it extremely difficult for polymers to penetrate and achieve good interfacial interactions. Natural graphite (NG), like CNT, offers superior conductivity since both materials share the same chemistry. NG is a planar structure composed of layers of fused benzene rings (hexagonally arranged covalently bonded carbon atoms) held together by relatively weak van der Waals interactions [5]. The planar structure of NG allows for superior conductivity in the plane of the benzene network [6]. In addition, due to this relatively weak interlayer force, NG can easily be intercalated and exfoliated to produce exfoliated graphite nanoplatelets (GNP) [5]. The further exfoliation of natural graphite enhances its potential use in polymer composites by creating a filler that can produce multiple conductive pathways allowing the GNP polymer composites to have a lower percolation threshold [1, 6].
机译:导电膜具有许多应用,包括电磁屏蔽,光伏,气体传感器,以及更多[1]。最近,通过碳纳米管(CNT)或CNT型碎片料(BP)/热固性树脂[2]复合薄膜通过金属的高密度,成本和腐蚀性腐蚀而取代更传统的金属填料的复合膜进行了大量的作品。 1]。由于CNT的强van DAR WAALS相互作用和高表面积[3],并且一维结构限制了复合膜的二维面内导电性,因此难以掺入聚合物基质。然而,BP是CNT [2,4]的致密网络或垫,并且由于纳米管通路的丰度而产生高导电膜。由于其能够像更传统的碳纤维垫的能力[3],BP也是CNT的理想替代方案。然而,CNT的密集网络由BP组成,使聚合物使聚合物非常困难并实现良好的界面相互作用。自然石墨(NG)如CNT,由于两种材料共享相同的化学,因此提供了卓越的导电性。 Ng是由相对弱的范德华相互作用相对较弱的稠合苯环(六角形共价键合碳原子)组成的平面结构[5]。 NG的平面结构允许苯网络平面中的优异导电性[6]。另外,由于该层间力相对较弱,Ng可以容易地插入并剥离以产生剥离的石墨纳米键(GNP)[5]。通过产生可以产生多种导电途径的填料,天然石墨的进一步剥离可增强其在聚合物复合材料中的潜在用途,其允许GNP聚合物复合材料具有较低的渗透阈值[1,6]。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号