首页> 外文会议>Society of Photo-Optical Instrumentation Engineers Conference on Smart Nondestructive Evaluation and Health Monitoring of Structural and Biological Systems >A real-time structural parametric identification system based on fiber optic sensing and neural network algorithms
【24h】

A real-time structural parametric identification system based on fiber optic sensing and neural network algorithms

机译:基于光纤感测和神经网络算法的实时结构参数识别系统

获取原文

摘要

A structural parametric identification strategy based on neural networks algorithms using dynamic macro-strain measurements in time domain from a long-gage strain sensor by fiber optic sensing technique such as Fiber Bragg Grating (FBG) sensor is developed. An array of long-gage sensors is bounded on the structure to measure reliably and accurately macro-strains. By the proposed methodology, the structural parameter of stiffness can be identified. A beam model with known mass distribution is considered as an object structure. Without any eigenvalue analysis or optimization computation, the structural parameter of stiffness can be identified. First an emulator neural network is presented to identify the beam structure in current state. Free vibration macro-strain responses of the beam structure are used to train the emulator neural network. The trained emulator neural network can be used to forecast the free vibration macro-strain response of the beam structure with enough precision and decide the difference between the free vibration macro-strain responses of other assumed structure with different structural parameters and those of the original beam structure. The root mean square (RMS) error vector is presented to evaluate the difference. Subsequently, corresponding to each assumed structure with different structural parameters, the RMS error vector can be calculated. By using the training data set composed of the structural parameters and RMS error vector, a parametric evaluation neural network is trained. A beam structure is considered as an existing structure, based on the trained parametric evaluation neural network, the stiffness of the beam structure can be forecast. It is shown that the parametric identification strategy using macro-strain measurement from long-gage sensors has the potential of being a practical tool for a health monitoring methodology applied to civil engineering structures.
机译:开发了一种基于神经网络算法的结构参数识别策略,通过光纤传感技术诸如光纤布拉格光栅(FBG)传感器的长量电传感器中的时域的动态宏应变测量。一系列长量具传感器界定在结构上,以可靠且精确地测量宏观菌株。通过所提出的方法,可以识别刚度的结构参数。具有已知质量分布的光束模型被认为是物体结构。没有任何特征值分析或优化计算,可以识别刚度的结构参数。首先,提出了仿真器神经网络以识别当前状态的光束结构。梁结构的自由振动宏观应变响应用于培训仿真器神经网络。培训的仿真器神经网络可用于预测光束结构的自由振动宏应变响应,具有足够的精度,并确定具有不同结构参数和原始光束的其他假定结构的自由振动宏应对响应之间的差异结构体。提出了根均线(RMS)误差矢量以评估差异。随后,对应于具有不同结构参数的每个假设结构,可以计算RMS误差向量。通过使用由结构参数和RMS错误向量组成的训练数据集,训练了参数评估神经网络。基于训练的参数评估神经网络,将光束结构被认为是现有结构,可以预测光束结构的刚度。结果表明,使用来自长量具传感器的宏观应变测量的参数识别策略具有应用于适用于土木工程结构的健康监测方法的实用工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号