首页> 外文会议>Conference on Smart Nondestrutive Evaluation and Health Monitoring of Structural and Biological Systems II Mar 3-5, 2003 San Diego, California, USA >A real-time structural parametric identification system based on fiber optic sensing and neural network algorithms
【24h】

A real-time structural parametric identification system based on fiber optic sensing and neural network algorithms

机译:基于光纤传感和神经网络算法的实时结构参数识别系统

获取原文
获取原文并翻译 | 示例

摘要

A structural parametric identification strategy based on neural networks algorithms using dynamic macro-strain measurements in time domain from a long-gage strain sensor by fiber optic sensing technique such as Fiber Bragg Grating (FBG) sensor is developed. An array of long-gage sensors is bounded on the structure to measure reliably and accurately macro-strains. By the proposed methodology, the structural parameter of stiffness can be identified. A beam model with known mass distribution is considered as an object structure. Without any eigenvalue analysis or optimization computation, the structural parameter of stiffness can be identified. First an emulator neural network is presented to identify the beam structure in current state. Free vibration macro-strain responses of the beam structure are used to train the emulator neural network. The trained emulator neural network can be used to forecast the free vibration macro-strain response of the beam structure with enough precision and decide the difference between the free vibration macro-strain responses of other assumed structure with different structural parameters and those of the original beam structure. The root mean square (RMS) error vector is presented to evaluate the difference. Subsequently, corresponding to each assumed structure with different structural parameters, the RMS error vector can be calculated. By using the training data set composed of the structural parameters and RMS error vector, a parametric evaluation neural network is trained. A beam structure is considered as an existing structure, based on the trained parametric evaluation neural network, the stiffness of the beam structure can be forecast. It is shown that the parametric identification strategy using macro-strain measurement from long-gage sensors has the potential of being a practical tool for a health monitoring methodology applied to civil engineering structures.
机译:提出了一种基于神经网络算法的结构参数识别策略,该策略使用长距离应变传感器通过光纤传感技术(例如光纤布拉格光栅(FBG)传感器)在时域中进行动态宏应变测量。在结构上绑定了一系列长距离传感器,以可靠,准确地测量宏观应变。通过提出的方法,可以确定刚度的结构参数。具有已知质量分布的梁模型被视为对象结构。无需任何特征值分析或优化计算,就可以确定刚度的结构参数。首先,提供了一个仿真器神经网络来识别当前状态下的光束结构。梁结构的自由振动大应变响应用于训练仿真器神经网络。经过训练的仿真器神经网络可用于以足够的精度预测梁结构的自由振动宏观应变响应,并确定具有不同结构参数的其他假定结构的自由振动宏观应变响应与原始梁的差异。结构体。提出了均方根(RMS)误差矢量以评估差异。随后,对应于具有不同结构参数的每个假定结构,可以计算RMS误差向量。通过使用由结构参数和RMS误差向量组成的训练数据集,对参数评估神经网络进行训练。梁结构被认为是现有结构,基于训练后的参数评估神经网络,可以预测梁结构的刚度。结果表明,使用长距离传感器的宏观应变测量进行参数识别的策略,有可能成为应用于土木工程结构的健康监测方法的实用工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号