首页> 外文会议>National Conference on Fluid Power >Control and Stability Analysis of Practical Load-Sense Systems
【24h】

Control and Stability Analysis of Practical Load-Sense Systems

机译:实用载荷系统的控制与稳定性分析

获取原文

摘要

complete hydraulic load sense system such as that found in an excavator is a naturally complex model. Components such as the engine, hydraulic pump, valves, uncertain load dynamics as well as uncertain operator behavior can instigate instability in various ways in a complex load-sense system. Many researchers has confronted this situation in different ways. Most of these papers ignored some practical aspects such as effect of load-sense control spool area etc. For a typical load sense system if the engine speed is assumed to be constant, the operator input to the valve is the only external input or effect into the system that drives the stability of the whole system. The variation in the load could be considered as external disturbance. Even though it is possible to formulate a control algorithm with one input for the whole system, the analytical solution would be very difficult to obtain because of the complexity of the involved nonlinear dynamics. Therefore to simplify the scenario, we considered two control elements: a) operator input and b) effective opening area of the load sense spool. In this paper, we have considered a typical load sense system with PC, LS spool, servo and bias piston as well as swash plate kit. For simplicity the valve (which is operated by operator somewhat directly) is replaced with a variable area orifice controlled by operator input. We also consider a single acting hydraulic actuator with variable load to demonstrate the effectiveness of the control law through simulation. The paper will start with Chapter 1 –Introduction, where the motivation and objective of the authors are presented. This chapter will also contain a relevant literature review in context of the content of the paper. The Chapter 2 will describe the differential equations involved in a typical load-sense system. The chapter will also define the states and a state space model of the system. Chapter 3 will discuss the control objectives which is partial back-stepping control. We will discuss how a partial back-stepping could be applied to derive the proposed control algorithm. In Chapter 4, a simulation is conducted to show the usefulness of the control law discussed in Chapter 3 and finally, some concluding remarks.
机译:完整的液压负荷感测系统,如挖掘机中的发现是一种自然复杂的模型。诸如发动机,液压泵,阀门,不确定负载动力学以及不确定操作员行为的组件可以在复杂的负载感系统中以各种方式溶解不稳定。许多研究人员以不同的方式面临着这种情况。这些论文中的大多数忽略了一些实用方面,例如负载感测控制阀芯等的影响。如果假设发动机速度是恒定的,则典型的负载感测系统的效果等,操作员输入到阀门的唯一外部输入或效果驱动整个系统稳定性的系统。负载的变化可以被认为是外部干扰。即使可以用整个系统的一个输入配制控制算法,由于涉及的非线性动力学的复杂性,分析解决方案是非常难以获得的。因此,为了简化方案,我们考虑了两个控制元件:a)运算符输入和b)有效的负载感测线槽的开口面积。在本文中,我们考虑了具有PC,LS阀芯,伺服和偏置活塞以及旋转斜盘套件的典型负载感。为简单起见,阀门(由操作员操作稍微操作)被通过操作员输入控制的可变区域孔更换。我们还考虑一种具有可变载荷的单一作用液压执行器,通过模拟来证明控制法的有效性。本文将从第1章 - 介绍作者的动机和目标。本章还将在论文内容的背景下包含有关的文献综述。第2章将描述典型负载感测系统中涉及的微分方程。本章还将定义系统的状态和状态空间模型。第3章将讨论偏离步进控制的控制目标。我们将讨论如何应用部分后踏步来导出所提出的控制算法。在第4章中,进行了模拟,以显示第3章讨论的控制法的有用性,最后,一些结论备注。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号