首页> 外文会议>Conference on agricultural and forest meteorology >SPECTRAL ANALYSES OF LONG-TERM MEASUREMENTS OF TURBULENT EXCHANGE OVER MIXED HARDWOOD FORESTS
【24h】

SPECTRAL ANALYSES OF LONG-TERM MEASUREMENTS OF TURBULENT EXCHANGE OVER MIXED HARDWOOD FORESTS

机译:混合硬木森林湍流交换长期测量的光谱分析

获取原文

摘要

It is well recognized that losses in measured eddy-covariance fluxes can be caused by path/line averaging, sensor separation, inadequate sensor frequency response, damping through tubes in closed-path gas analyzers, data processing, etc., (Moore, 1986). Previous studies using spectral methods have shown that corrections to measured fluxes range from a few to over 30% (Eugster & Senn 1995, Leuning & Judd 1996, Horst 1997, Massman 2000). The magnitudes of such flux losses in the higher frequency range could be on the same order as unaccounted lower frequency fluxes due to inadequate averaging time (Rissmann & Tetzlaff 1994, Sakai et al. 2001, Finnigan et al. 2002). Spectral methods used to correct the flux losses often require knowledge of the true spectra and cospectra, as well as the transfer functions (Moore, 1986; Massman, 2000). The most used spectral and cospectral models are those of Kaimal et al. (1972) and Wyngaard and Cote (1972) derived from observations over smooth surfaces and flat terrain. Sakai et al. (2001) indicated that the normalized cospectra of momentum and sensible heat in the roughness sublayer over forest canopies have nearly identical form in convective conditions. Here we examine spectra and cospectra charac-teristics to determine appropriate similarity forms of spectral and cospectral for subsequent applications. Then, we focus on the frequency loss of COz and water vapor fluxes due to damping through the long tubes, assuming this to be the major cause of frequency losses. Variations in the coefficients of damping function and the magnitudes of flux correction are also discussed. Data used here were collected at the UMBS (University of Michigan Biological Station in lower northern Michigan) AmeriFlux site. Eddy-covariance systems (CSAT-3 sonic anemometers and a LiCor-6262 closed path infrared gas analyzers) were installed at 34 m and 46 m. The mean tree height is 22 m and peak LAI is 3.5. Results are derived from over 2,400 hourly spectra and cospectra during June-August of 1999 and 2000 at 46 m. Similar analyses are to be performed for the MMSF (Morgan-Monroe State Forest in south central Indiana) site.
机译:众所周知,测量涡流通量的损失可以是由路径/线平均,传感器分离,传感器频率响应不足,阻尼在闭路气体分析仪,数据处理等中的管道中的损失(Moore,1986) 。以前使用光谱方法的研究表明,对测量的势态的校正范围从几到多余30%(Eugster和Senn 1995,Leuning&Sudd 1996,Horst 1997,Massman 2000)的校正。由于平均时间不足(Rissmann&Tetzlaff 1994,Sakai等,2001,Finnigan等,2002),这种磁通量范围内的这种磁通量损耗的损耗的大小可以与未下降的较低频率相同的顺序相同。用于校正磁通量损失的光谱方法通常需要了解真正的光谱和COSCOCTRA,以及转移功能(Moore,1986; Massman,2000)。最常用的光谱和COSPectral模型是Kaimal等人。 (1972年)和Wyngaard和Cote(1972)源于平滑表面和平坦地形的观察结果。 Sakai等人。 (2001)表示,在森林檐篷上粗糙化子层中的动量和明智热的正常化COSCOXCOPCOSCOPET在对流条件下具有几乎相同的形式。在这里,我们检查光谱和COSPectra Charac-Teristics,以确定随后应用的频谱和COSPectral的适当相似性。然后,我们专注于由于通过长管阻尼而重点的COZ和水蒸气通量的频率损失,假设这是频率损失的主要原因。还讨论了阻尼功能系数的变化和磁通校正的幅度。这里使用的数据在UMBS(Michigan大学在Michigan的Michigan Biological Station大学)Ameriflux位点。涡流协方差系统(CSAT-3声音风光测量仪和LICOR-6262封闭路径红外气体分析仪安装在34米和46米。平均树高度为22米,莱峰是3.5。结果在1999年6月至2000年期间源于超过2,400个小时的Spectra和COSCOSCOSCOSCOSCOSCOSCOSTA。 MMSF(印第安纳州南部中部摩根州森林)的类似分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号