首页> 外文会议>International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering >The structure of divergence(s) in stationary state of irreversible heat conduction processes and their partial differential equations of elliptic type
【24h】

The structure of divergence(s) in stationary state of irreversible heat conduction processes and their partial differential equations of elliptic type

机译:不可逆导热过程的静止状态下的分歧结构及其椭圆型偏微分方程

获取原文

摘要

Irreversible processes mean entropy production or simply energy dissipation. This is true for stationary states too. The Laplace's equation for heat conduction as an elliptic linear second order partial differential equation does not express any energy dissipation in the conservative potential field according to the minimum principles. A new quasilinear elliptic type second order partial differential equation to stationary state heat conduction process was analyzed with the aid of minimum principles (and also on the base of the divergence term). Investigations made for Onsager [1,2] and Prigogine [3,4] principles showed the deciding role of local dissipation potentials. The existence of these potentials is basically a crucial point for real processes. The new quasilinear elliptic type partial differential equation of second order is in total agreement with Gyarmati's [5] integral principle for stationary state too. Treating the above questions the proper Lagrange densities and the Euler-Lagrange differential equations must be applied [16] in the different representational pictures (to treat the variational problems). On the base of the new equation(s) the different non-equilibrium temperatures can be determined for steady state irreversible processes but it cannot be done for the Laplace's equation. The structure of the divergence shows all these features. And what is more important one can find a connecting equation between the internal energy and the entropy (entropy production!) considering the steady state irreversible process. The new equation(s) interprets in a special way the results of the so-called dimensional analysis for nonlinear heat conduction in stationary state too. Boundary conditions were also taken into consideration. Discussion with heat reservoirs helps to expose the questions on the classical thermodynamic level too.
机译:不可逆的过程平均熵产生或简单的能量耗散。这也适用于稳定状态。作为椭圆线性二阶偏微分方程的热传导的拉普拉斯式的等式不根据最低原理表达保守潜在场中的任何能量耗散。借助于最低原理(以及分歧项的基础)分析了静止状态热传导过程的新的Quasilinear椭圆型二阶偏微分方程。对Onsager的调查[1,2]和PRIGOGINE [3,4]原则显示了局部耗散潜力的决定。这些潜力的存在基本上是真实过程的关键点。第二阶的新的QuasiLinear椭圆型部分微分方程与Gyarmati的[5]整体原理进行了总协议。在不同的代表图片中处理适当的拉格朗日密度和欧拉拉格朗差动方程的适当拉格朗日密度(以处理变分))。在新的等式的基础上,可以确定不同的非平衡温度以确定稳态不可逆转过程,但不能为拉普拉斯方程进行。发散的结构显示了所有这些特征。更重要的是,考虑到稳定状态不可逆转过程,可以在内部能量和熵(熵生产中)之间找到连接方程。新的等式以特殊的方式解释所谓的尺寸分析对于静止状态的非线性导热的结果。还考虑了边界条件。与热水库的讨论有助于暴露在经典热力学水平上的问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号