首页> 外文会议>Workshop on Genome Informatics >Development of System Identification Technique Based on Real-Coded Genetic Algorithm
【24h】

Development of System Identification Technique Based on Real-Coded Genetic Algorithm

机译:基于实际编码遗传算法的系统识别技术的开发

获取原文

摘要

Recent advances of powerful new technologies such as DNA microarrays provide a mass of gene expression data on a genomic scale. One of the most important projects in post-genome-era is the system identification of gene networks by using these observeddata. We previously introduced an efficient numerical optimization technique by using time-course data of system components, which is based on real-coded genetic algorithm (RCGAs) to estimate the reaction coefficients among system components of a dynamic network model called S-system that is a type of power-low formalism and is suitable for description of organizationally complex systems such as gene expression networks and metabolic pathways. This technique with the combination of one of the crossoveroperators for RCGAs called unimodal normal distribution crossover (UNDX) with the alternation of generation model called minimal generation gap (MGG) showed remarkable superiority to the simple GA in case of simple oscillatory system. However this casestudy belongs to a comparative easy inverse problem; the number of system components was 2 and the estimated parameters was 12. For application to gene networks including huge number of estimated parameters, our new optimization techniques have to be adapted to inverse problem with more strict circumstances. In this paper, we shall attempt to the inference of the interactions in more large scale of gene expression networks. In the case study, we also propose new efficient approaches to narrow down the candidates that explain the observed time-courses within the immense huge searching space of parameter values.
机译:DNA微阵列等强大新技术的最新进展提供了关于基因组规模的基因表达数据。后基因组时代最重要的项目之一是使用这些观察到的基因网络的系统识别。我们之前通过使用系统组件的时课程数据来引入了高效的数值优化技术,该技术基于实际编码的遗传算法(RCGA)来估计动态网络模型的系统组件之间的反应系数,该系统是一个S-System的功率低形式主义的类型,适用于组织复杂的系统,例如基因表达网络和代谢途径。这种技术与RCGA的一个交叉渗透器的组合,称为单峰正态分布交叉(UNDX),其具有称为最小生成间隙(MGG)的生成模型的交替显示出在简单振荡系统的情况下对简单GA的显着优越性。然而,这种类别属于比较容易的逆问题;系统组件的数量为2,估计的参数为12.用于应用于基因网络,包括大量估计参数,我们的新优化技术必须适应更严格的情况。在本文中,我们将尝试在更大规模的基因表达网络中推动相互作用。在案例研究中,我们还提出了新的高效方法来缩小候选人,该候选人解释了在参数值的巨大巨大搜索空间内解释了观察到的时间课程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号