首页> 外文会议>International Conference on Nuclear Engineering >Buckling analysis in CREEP conditions: review and comparison
【24h】

Buckling analysis in CREEP conditions: review and comparison

机译:颅骨条件下的屈曲分析:审查和比较

获取原文

摘要

In the case of structures operating at high temperature m normal or accidental conditions, the influence of creep has to be considered at the design stage because this phenomenon may reduce the lifetime significantly. This is true in particular for buckling analysis: in creep conditions, the buckling sometimes occurs after a long period under a compressive load which is lower than the critical load assessed when considering an instantaneous buckling. The main reason is that creep deformations induce an amplification of the initial geometrical imperfections and consequently a reduction of the buckling load. Some Design Codes incorporate special rules and/or methods to take creep buckling into account. Creep buckling analysis methods aim at evaluating critical loading for a given hold period with creep or alternatively critical creep time for a given loading. The Codes where creep buckling is considered also define margins with respect to critical loading: it shall be demonstrated that creep instability will not occur during the whole lifetime when multiplying the specified loading by a coefficient (design factor) depending on the situation level. For the design of NPP, specific creep buckling rules exist in the US, France and Russia. In the US, ASME, Section III, Subsection NH, which is dedicated to high temperature components design, provides limits which are applicable to general geometrical configurations and loading conditions that may cause buckling due to creep behaviour of the material. For load-controlled time-dependent creep buckling, the design factors to apply to the specified loadings are 1.5 for levels A, B or C service loadings and 1.25 for level D service loadings. A design factor is not required in the case of purely strain-controlled buckling. No specific method is provided to obtain critical loading or critical time for creep instability. In France, creep buckling rules included in RCC-MR, Chapter RB or RC 3200 are similar to those of ASME, Subsection NH. In addition, a new simplified method has been developed recently to assess critical creep loading/time for a shell under mechanical loading. Diagrams, presently valid for 316 austenitic steel, have been established from a ring model with perfect plasticity. Creep buckling load is determined applying a reduction factor to Euler instantaneous buckling load, depending on temperature, hold time, thinness of the structure and geometrical imperfection amplitude. This method has been validated by experimental tests and finite element results. It will be included in Appendix A7 of RCC-MR, Edition 2000. In Russia, the document PNAE G-7-002-86 applicable to NPP equipment and pipeline strength analysis, presents stability check analytical calculations to be performed to determine the allowable loading or allowable operation lifetime for typical geometries (cylindrical shells, dished ends) and loadings (external pressure, axial force). In the case of stability analysis under creep, creep deformation is assessed using a Norton law. In Germany, a KTA project including an analytical method for creep buckling analysis had also been proposed at the beginning of 90th to be used in HTR development. Finally, in India, a creep buckling analysis method has been proposed in the framework of PFBR project. As per this approach, elastic-plastic analysis should be performed replacing the instantaneous stress-strain curve at the design temperature by the isochronous curve for the time corresponding to the lifetime of the component and the same temperature. These methods are applied in the case of cylindrical shells under external pressure and comparative results are provided. The RCC-MR method appears to be reasonably conservative and applicable with several creep law types.
机译:在高温M正常或意外条件下操作的结构的情况下,必须在设计阶段考虑蠕变的影响,因为这种现象可以显着降低寿命。特别是对于屈曲分析,这是真的:在蠕变条件下,屈曲有时在长时间之后发生在压缩载荷之后,该压缩载荷低于在考虑瞬时屈曲时评估的临界负荷。主要原因是蠕变变形诱导初始几何缺陷的放大,从而减少屈曲负荷。某些设计代码包括特殊规则和/或方法,以考虑蠕变屈曲。蠕变屈曲分析方法旨在评估给定的保持周期的关键负载,其具有给定负载的蠕变或可选的临时蠕变时间。考虑蠕变屈曲的码也限定了关于关键负载的边缘:应当证明在整个寿命期间不会发生蠕变不稳定性,当根据情况水平乘以系数(设计因子)时,在整个寿命期间不会发生。对于NPP的设计,美国,法国和俄罗斯存在特定的蠕变屈曲规则。在美国,ASME,第三节,专门用于高温分量设计的第III款,提供适用于一般几何配置和由于材料蠕变行为而导致屈曲的一般几何配置和装载条件的限制。对于负载控制的时间依赖性蠕变屈曲,适用于指定负载的设计因素为1.5,适用于A,B或C服务负载,1.25用于D级D级服务负载。在纯粹的应变控制屈曲的情况下,不需要设计系数。没有提供特定方法以获得蠕变不稳定性的关键负载或关键时间。在法国,RCC-MR,RB章节或RC 3200中包含的蠕变屈曲规则与ASME,第Nation第NU段类似。此外,最近已经开发了一种新的简化方法来评估机械负载下的壳体的关键蠕变载荷/时间。图表,目前有效的316奥氏体钢,从一个具有完美可塑性的环形模型建立。根据温度,保持时间,结构的薄度和几何缺陷幅度,确定将减速因子施加到欧拉瞬时屈曲负荷的蠕变屈曲负荷。通过实验测试和有限元结果验证了该方法。它将包含在2000年RCC-MR版的附录A7中。在俄罗斯,适用于NPP设备和管道强度分析的文件PNAE G-7-002-86,呈现稳定性检查分析计算以确定允许的装载或允许操作寿命,用于典型几何形状(圆柱形壳,碟形端部)和负载(外压,轴向力)。在蠕变下稳定性分析的情况下,使用诺顿法律评估蠕变变形。在德国,在第90次在HTR开发中使用了一个KTA项目,包括蠕变屈曲分析的分析方法。最后,在印度,在PFBR项目的框架中提出了一种蠕变屈曲分析方法。根据该方法,应通过同步曲线对应于组件的寿命和相同温度的时间来执行弹性塑性分析。随着时间的时间和相同的温度,在设计温度下替换设计温度的瞬时应力 - 应变曲线。这些方法在外部压力下圆柱形壳的情况下应用,并提供了比较结果。 RCC-MR方法似乎合理保守,适用于几种蠕变法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号