首页> 外文会议>European conference on industrial furnaces and boilers >EFFECT OF ACOUSTIC OSCILLATIONS ON FLAME DYNAMICS IN SWIRL BURNERS
【24h】

EFFECT OF ACOUSTIC OSCILLATIONS ON FLAME DYNAMICS IN SWIRL BURNERS

机译:声振荡对旋流燃烧器火焰动态的影响

获取原文

摘要

The likelihood of self-sustained oscillations in modern combustion systems has increased since lean premixed or partially premixed combustion conditions are currently being employed as a way to reduce NO_x emissions and gain higher efficiencies. These undesirable large pressure variations, commonly found over a wide range of operating conditions, arise due to coupling between the periodic heat release and the natural acoustic modes of some geometric elements of the system. This paper presents an experimental study of a 100 kW scale model of a 2MW swirl burner/furnace system. Analysis of the interaction between pressure and velocity fields throughout the system is aided by a detailed study of phase locked laser anemometry and pressure measurements in both cold and reactive components of the system, i.e. inlet geometry and burner/furnace. The feedback mechanism, heat release-pressure wave coupling, is explained by the fluctuation of fuel/air flow rates. Two main instabilities are encountered. One type adapts to some of the natural acoustic modes of the supply inlet geometry and has a significant effect on the inlet flow, inducing reverse flow for approximately one sixth of the cycle. The oscillation driving mechanism is related to the fluctuation in reactants supply to the flame holder. Flame destabilization phenomena such as disappearance of the central reverse flow zone are a consequence of the oscillation and do not play a major role in driving the instability. The second instability encountered presents smaller oscillation amplitudes and a higher frequency matching the longitudinal acoustic mode of the furnace. The fluctuations in inlet flow rates, for this second case, are significantly smaller but still provide the necessary variation in mixture rate to generate a concentrated heat release at a certain time of the limit cycle.
机译:自动燃烧系统中自我持续振荡的可能性增加,因为目前正在聘请精益预混或部分预混的燃烧条件作为减少NO_X排放并获得更高效率的一种方式。这些不希望的大压力变化通常在多种操作条件下发现,由于周期性释放与系统的一些几何元件的自然声学模式之间的耦合,因此由于耦合而产生。本文介绍了一种200千瓦型2MW旋转燃烧器/炉系统的规模模型的实验研究。通过在系统的冷和反应部件的锁相激光风速和压力测量的详细研究中,辅助整个系统中压力和速度场之间的相互作用分析,即入口几何和燃烧器/炉子。通过燃料/空气流速的波动解释了反馈机理,热释放压力波耦合。遇到了两个主要的不稳定性。一种类型适应供应入口几何形状的一些自然声学模式,对入口流有显着影响,诱导逆流循环的六个六个六个。振荡驱动机构与反应物供应的波动与火焰保持器有关。火焰不稳定现象,例如中央反向流动区的消失是振荡的结果,并且在驱动不稳定性方面不会发挥重要作用。遇到的第二不稳定性呈现较小的振荡幅度和较高的炉子匹配炉的纵向声学模式。对于该第二种情况,入口流速的波动显着较小,但仍然提供混合速率的必要变化,以在极限循环的一定时间产生浓缩热释放。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号