首页> 外文会议>Space technology and applications international forum >Analysis of a Vapor Anode, Multi-Tube, Potassium Refractory AMTEC Converter for Space Applications
【24h】

Analysis of a Vapor Anode, Multi-Tube, Potassium Refractory AMTEC Converter for Space Applications

机译:用于空间应用的蒸汽阳极,多管,钾耐火AMTEC转换器的分析

获取原文

摘要

Vapor anode, multi-tube AMTEC converters, currently under development for possible use in future space power systems, utilize sodium working fluid. An avenue to improve the conversion efficiency, not seriously considered to date, is using potassium working fluid. This paper compares the performance and operation limits of Mo-41%Re, sodium and potassium AMTEC cells of an identical design. Unlike the sodium cell, the operation of the potassium cell is restrained by incipient dryout in the evaporator wick. Such incipient dryout could be delayed, but not fully avoided, by moving the evaporator wick surface further away from the cell's hot plate. The potassium cell with a remote evaporator delivers a peak electrical power (Pe) of 8.5 We at a load voltage V_L = 2.7 V and efficiency of 17.4%, when the hot side temperature, T_(hot) = 1174 K. The cell peak efficiency of 17.7% occurs at V_L = 3.0 V, but lower Pe (7.5 We) and T_(hot) (1136 K). When operated at a 50 K lower hot side temperature, the potassium cell delivers the same electrical power and voltage output as the sodium cell. For the same load voltage an hot side temperature, however, the potassium cell provides 1.2 We more power at a 2 percentage points higher efficiency than the sodium cell. Conversely, the optimized condenser temperature of the potassium cell (560 K) is 90 K lower than that of the sodium cell (650 K), which may increase the surface area of the heat rejection radiator by as much as 85%. Therefore, the choice of a potassium cell should be based on weighing the advantage of attaining higher performance and/or operating at lower T_(hot) versus increasing the surface area of the heat rejection radiator.
机译:蒸汽阳极,多管AMTEC转换器,目前正在开发的未来空间电力系统中可能使用,利用钠工作液。提高转换效率的途径,不认真考虑到迄今为止,正在使用钾工作流体。本文比较了相同设计的MO-41%,钠和钾和钾的性能和运行限制。与钠细胞不同,钾电池的操作在蒸发器芯中的初始干燥中受到限制。通过移动蒸发器芯表面进一步远离电池的热板,可以延迟这种初期的干沟,但不能完全避免。具有远程蒸发器的钾电池可提供8.5的峰值电力(PE),在负载电压V_L = 2.7V和效率为17.4%时,当热侧温度时,T_(热)= 1174 K.细胞峰值效率在V_L = 3.0 V中发生17.7%,但下层PE(7.5 WE)和T_(热)(1136 k)。当在50 k较低的热侧温度下操作时,钾电池可提供与钠电池相同的电力和电压输出。然而,对于相同的负载电压,热侧温度,钾电池提供1.2我们的功率比钠细胞高出2个百分点。相反,钾电池(560k)的优化冷凝器温度比钠钠(650k)低90 k,这可能将热排斥散热器的表面积增加到85%。因此,钾电池的选择应基于称量在较低的T_(热)与增加散热散热器的表面积的更高性能和/或操作的优点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号