首页> 外文会议>Annual Meeting of the American Society for Precision Engineering >COMPACT ABSOLUTE LENGTH MEASURING MACHINE BY COMBINING REGULAR CRYSTALLINE SURFACE AND LASER INTERFEROMETRY
【24h】

COMPACT ABSOLUTE LENGTH MEASURING MACHINE BY COMBINING REGULAR CRYSTALLINE SURFACE AND LASER INTERFEROMETRY

机译:Compance Crystalline Surface和激光干涉测量通过组合紧凑型绝对长度测量机

获取原文

摘要

Since nanotechnology has progressed rapidly, new methods for length measurement applicable to the millimeter range with sub-nanometer resolution are required. Currently, the standard method for length measurement is laser interferometry. A heterodyne interferometer with a Zeeman laser or a homodyne interferometer using the bi-fringes counting method is widely used in the industry. However, it is difficult to determine arbitrary length with the sub-nanometer accuracy using the interferometers, because they have the non-linearity problem of the fringe interpolation. A phase modulation homodyne interferometer, that can determine the optical path difference of wavelength times integer with the accuracy of 10 picometer or less, is proposed. The lattice spacing of approximately 0.2 nanometer for some regular crystalline lattices is uniform and stable over a long range, when the crystals are stress free. These crystals can be used as reference scales with a sub-nanometer resolution instead of laser interferometry. X-ray interferometry (XRI) using silicon crystal has been developed to determine the lattice spacing of silicon at National Metrological Laboratories. Moreover, the combined optical and x-ray interferometer (COXI) has been developed for absolute length measurement with sub-nanometer accuracy at European metrological laboratories. However, XRI is very delicate for an adjustment to obtain x-ray fringe, and not commonly used in the industry. On the other hand, a scanning tunneling microscope (STM) and an atomic force microscope (AFM) are becoming a powerful and popular tool in surface engineering fields and can be used to obtain "images of atoms" on a regular crystalline surface. Therefore, such crystalline lattice can be used as a "crystalline lattice scale" with sub-nanometer resolution by combining them with STM/AFM. We have shown the feasibility of the crystalline lattice scale using a graphite crystal (highly oriented pyrolytic graphite: HOPG) as the reference scale and a dual-tunneling-unit scanning tunneling microscope as the detector. In this article, we propose a compact absolute length measuring machine (ALMM) with sub-nanometer accuracy and sub-millimeter travel by combining "the crystalline lattice scale" as a fine scale and the phase modulation homodyne laser interferometry (= optical fringe) as a coarse scale.
机译:由于纳米技术已经迅速进行了进展,因此需要用于适用于毫米范围的长度测量的新方法是具有子纳米分辨率的毫米范围。目前,长度测量的标准方法是激光干涉测量。具有塞曼激光器的外差干涉仪或使用双流计数法的卵体干涉仪的差异干涉仪在行业中广泛应用。然而,难以使用干涉仪与子纳米精度确定任意长度,因为它们具有边缘插值的非线性问题。提出了一种相位调制型同源干涉仪,其可以提出了通过10微米或更小的精度确定波长乘以整数的光路径。当晶体不受压力时,一些规则结晶晶格的晶格间距为约0.2纳米对于一些规则结晶晶格的晶格间距在很长的范围内均匀并且稳定。这些晶体可以用作具有子纳米分辨率而不是激光干涉法的参考刻度。已经开发了使用硅晶体的X射线干涉测量法(XRI)以确定国家计量实验室硅的晶格间距。此外,已经开发了组合的光学和X射线干涉仪(COXI),用于欧洲计量实验室的亚纳米精度的绝对长度测量。然而,XRI非常精细地进行调整,以获得X射线边缘,而不是在行业中使用。另一方面,扫描隧穿显微镜(STM)和原子力显微镜(AFM)在表面工程领域成为强大而流行的工具,并且可用于在规则结晶表面上获得“原子图像”。因此,通过将它们与STM / AFM组合,可以使用这种结晶晶格作为“结晶晶格刻度”,其具有子纳米分辨率。我们已经使用石墨晶体(高度取向的热解石墨:HOPG)作为参考刻度和双隧道单元扫描隧道显微镜作为检测器的晶格晶格的可行性。在本文中,我们通过将“结晶晶格刻度”为精细尺度和相位调制&型晶体激光干涉测量法(=光学边缘),提出了一种紧凑的绝对长度测量机(ALMM),并通过将“晶格刻度”和“光学条纹”(=光学边缘)为单位和亚毫米粗略尺度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号