【24h】

Improving Speed and Security in Updatable Encryption Schemes

机译:更新可更新加密方案中的速度和安全性

获取原文

摘要

Periodic key rotation is a common practice designed to limit the long-term power of cryptographic keys. Key rotation refers to the process of re-encrypting encrypted content under a fresh key, and overwriting the old ciphertext with the new one. When encrypted data is stored in the cloud, key rotation can be very costly: it may require downloading the entire encrypted content from the cloud, re-encrypting it on the client's machine, and uploading the new ciphertext back to the cloud. An updatable encryption scheme is a symmetric-key encryption scheme designed to support efficient key rotation in the cloud. The data owner sends a short update token to the cloud. This update token lets the cloud rotate the ciphertext from the old key to the new key, without learning any information about the plaintext. Recent work on updatable encryption has led to several security definitions and proposed constructions. However, existing constructions are not yet efficient enough for practical adoption, and the existing security definitions can be strengthened. In this work we make three contributions. First, we introduce stronger security definitions for updatable encryption (in the ciphertext-dependent setting) that capture desirable security properties not covered in prior work. Second, we construct two new updatable encryption schemes. The first construction relies only on symmetric cryptographic primitives, but only supports a bounded number of key rotations. The second construction supports a (nearly) unbounded number of updates, and is built from the Ring Learning with Errors (RLWE) assumption. Due to complexities of using RLWE, this scheme achieves a slightly weaker notion of integrity compared to the first. Finally, we implement both constructions and compare their performance to prior work. Our RLWE-based construction is 200× faster than a prior proposal for an updatable encryption scheme based on the hardness of elliptic curve DDH. Our first construction, based entirely on symmetric primitives, has the highest encryption throughput, approaching the performance of AES, and the highest decryption throughput on ciphertexts that were re-encrypted fewer than fifty times. For ciphertexts re-encrypted over fifty times, the RLWE construction dominates it in decryption speed.
机译:定期键旋转是一个常见的做法,旨在限制加密密钥的长期功率。键旋转是指在新鲜密钥下重新加密加密内容的过程,并用新的密钥覆盖旧密码。当加密数据存储在云中时,键旋转可能非常昂贵:它可能需要从云中下载整个加密内容,请将其重新加密在客户端的计算机上,并将新的密文上载回云。可更新的加密方案是一个对称密钥加密方案,旨在支持云中的有效键旋转。数据所有者将简短的更新令牌发送到云端。此更新令牌允许云从旧密钥向新密钥旋转密文,而无需学习明文的任何信息。最近的可更新加密的工作导致了几种安全定义和建议的结构。然而,现有的结构尚未有效地进行实际采用,并且可以加强现有的安全定义。在这项工作中,我们提出了三个贡献。首先,我们介绍更新的安全定义,以便可更新的加密(在密文依赖于依赖设置中)捕获未在事先工作中未涵盖的可望安全性能。其次,我们构建了两个新的可更新加密方案。第一个结构仅依赖于对称加密基元,但仅支持有界数的键旋转。第二种结构支持(几乎)无界数更新,并且是由响铃学习的建筑物(RLWE)假设构建。由于使用RLWE的复杂性,与第一个,该方案达到了完整性略微较弱。最后,我们实施两个结构并将其表现与先前的工作进行比较。基于RLWE的结构比基于椭圆曲线DDH的硬度的可更新加密方案的先前提案更快。我们的第一个施工完全在对称基元,具有最高的加密吞吐量,接近AES的性能,以及在密码上重新加密少于五十次的密文上的最高解密吞吐量。对于已重新加密超过五十次的密文来说,RLWE构造以解密速度主导。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号