首页> 外文会议>International Conference on Structures Under Shock and Impact >Strain rate effect in material testing of bulk adhesive
【24h】

Strain rate effect in material testing of bulk adhesive

机译:散装粘合剂材料检测中的应变率效应

获取原文

摘要

Due to its high energy absorption and flexibility in joining different materials, adhesive bonding is applied increasingly in automobile and aircraft structures that may be subjected to high loading rates and large dynamic loads encountered in a crash or impact. Simulation of the dynamic response of bonded structures needs reliable numerical models accounting for the strain rate effects. Unlike that of steel, there is still no standardized testing procedure for adhesive materials designed for crash or impact loading conditions. Hence, how to obtain and transfer the dynamic test results to numerical models is an important issue for simulation. Besides using empirical formulae for material models, alternatively strain rate effects are frequently taken into account by direct implementation of experimentally determined data as material input curves, e.g. in finite element codes like LS-DYNA etc. Each of those curves consists of a plot of stress vs. strain within constant strain rate, but due to the acceleration of the specimen and its yielding within the gauge length, mostly the strain rate is not constant. Different kinds of strain rate e.g. nominal, averaged, actual strain rate etc. are discussed in this paper. The actual strain rate increases during the entire high-speed loading process of the test specimen. Frequently the plots of strain rate vs. time exhibit strong oscillations. Often even the designated loading velocities are not reached by far. Thus using experimentally determined stress-strain curves for the designated loading velocity without any consideration of the real strain rate evolution during the experiment may lead to insufficient accuracy. In this paper, a conversion method is suggested for interpreting such stress-strain curves despite the increasing strain rate during high-speed loading experiments and to obtain the corresponding stress for explicit algorithms used in transient analyses.
机译:由于其高能量吸收和加入不同材料的灵活性,粘合剂粘合越来越多地施加汽车和飞机结构,该飞机结构可能受到高负荷率和碰撞或冲击时遇到的大动态载荷。粘合结构的动态响应模拟需要可靠的数值模型占应变率效应的核算。与钢材不同,仍然没有标准化的测试程序,用于设计用于碰撞或冲击载荷条件。因此,如何获得和转移动态测试结果对数值模型是模拟的重要问题。除了使用材料模型的经验公式之外,还通过直接实施实验确定的数据作为材料输入曲线,例如,将应变速率效应进行应变速率效应。在LS-DYNA等有限元代码中。这些曲线中的每一个包括在恒定应变率内的应变与应变的曲线图组成,但由于样品的加速度及其在规格长度内产生,主要是应变率不是持续的。不同种类的应变率例如。本文讨论了标称,平均,实际应变率等。在测试样品的整个高速加载过程中,实际应变速率增加。通常,应变率的曲线与时间表现出强烈的振荡。甚至甚至都没有达到指定的装载速度。因此,在实验期间,使用用于指定的加载速度的实验确定的应力 - 应变曲线而不考虑真正的应变速率演化可能导致精度不足。在本文中,建议转换方法来解释这种应力 - 应变曲线尽管在高速加载实验期间的应变率增加,并且获得了瞬态分析中使用的显式算法的相应应力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号