【24h】

Strain rate effect in material testing of bulk adhesive

机译:散装胶材料测试中的应变率效应

获取原文
获取原文并翻译 | 示例

摘要

Due to its high energy absorption and flexibility in joining different materials, adhesive bonding is applied increasingly in automobile and aircraft structures that may be subjected to high loading rates and large dynamic loads encountered in a crash or impact. Simulation of the dynamic response of bonded structures needs reliable numerical models accounting for the strain rate effects. Unlike that of steel, there is still no standardized testing procedure for adhesive materials designed for crash or impact loading conditions. Hence, how to obtain and transfer the dynamic test results to numerical models is an important issue for simulation. Besides using empirical formulae for material models, alternatively strain rate effects are frequently taken into account by direct implementation of experimentally determined data as material input curves, e.g. in finite element codes like LS-DYNA etc. Each of those curves consists of a plot of stress vs. strain within constant strain rate, but due to the acceleration of the specimen and its yielding within the gauge length, mostly the strain rate is not constant. Different kinds of strain rate e.g. nominal, averaged, actual strain rate etc. are discussed in this paper. The actual strain rate increases during the entire high-speed loading process of the test specimen. Frequently the plots of strain rate vs. time exhibit strong oscillations. Often even the designated loading velocities are not reached by far. Thus using experimentally determined stress-strain curves for the designated loading velocity without any consideration of the real strain rate evolution during the experiment may lead to insufficient accuracy. In this paper, a conversion method is suggested for interpreting such stress-strain curves despite the increasing strain rate during high-speed loading experiments and to obtain the corresponding stress for explicit algorithms used in transient analyses.
机译:由于其高能量吸收和在连接不同材料时的灵活性,粘合剂粘接越来越多地应用于汽车和飞机结构,这些汽车和飞机结构可能会遭受高负载率和在碰撞或撞击中遇到的大动态载荷。粘结结构的动力响应仿真需要可靠的数值模型来考虑应变率效应。与钢材不同,针对碰撞或冲击载荷条件设计的粘合材料仍然没有标准化的测试程序。因此,如何获得动态测试结果并将其转换为数值模型是仿真的重要课题。除了将经验公式用于材料模型外,还可以通过直接将实验确定的数据作为材料输入曲线(例如:在诸如LS-DYNA等有限元代码中,每条曲线均由恒定应变率下的应力与应变图组成,但由于试样的加速度及其在标距内的屈服,大多数情况下应变率并不不变。不同种类的应变率,例如本文讨论了名义,平均,实际应变率等。在试样的整个高速加载过程中,实际应变率会增加。通常,应变率与时间的关系图显示出强烈的振荡。经常甚至达不到指定的加载速度。因此,对于指定的加载速度,使用实验确定的应力-应变曲线,而不考虑实验过程中实际应变率的变化,可能会导致精度不足。本文提出了一种转换方法来解释这种应力-应变曲线,尽管在高速加载实验中应变率会增加,并为瞬态分析中使用的显式算法获得相应的应力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号