首页> 外文会议>International ERCOFTAC Workshop on Direct and Large-Eddy Simulation >Influence of the Lateral Walls on the Thermal Plumes in Turbulent Rayleigh-Benard Convection in Rectangular Containers
【24h】

Influence of the Lateral Walls on the Thermal Plumes in Turbulent Rayleigh-Benard Convection in Rectangular Containers

机译:矩形容器中湍流瑞利邦对流热羽壁对横壁的影响

获取原文

摘要

Turbulent Rayleigh-Benard (RB) convection is one of the classical problems in fluid mechanics, where fluid with a Prandtl number Pr = v/k is exposed to a vertical temperature gradient between a hot lower and a cold upper surface. The Rayleigh number Ra = αgH~3 ΔT/(vk) is a non-dimensional parameter to specify the ratio between the buoyancy and viscous forces, where α, v and κ denote the thermal expansion coefficient, kinematic viscosity and thermal diffusivity, respectively. ΔT is the vertical temperature gradient between the two bounding surfaces, H the height of the fluid layer and g the gravitational acceleration. For high enough Ra the thermal plumes that are rising and falling from the respective hot and cold surfaces become increasingly irregular. In recent years many fundamental studies dealt with the Rayleigh-Benard problem in order to gain deeper knowledge of the underling mechanisms driving the convective flow and the heat transport. Verzicco and Sreenivasan [10] investigated the influence of an isothermal and a constant heat flux bottom plate in a cylindrical geometry on the heat transport for Rayleigh numbers up to 10~(13). They concluded that the unsteady ejection of thermal plumes with a constant heat flux boundary is closer to experimental conditions. The thermal plumes are, however, a subject area that attracted a lot of attention in the field of thermal convection. Shishkina and Wagner [9] also performed direct numerical simulations (DNS) in a cylindrical geometry and analysed the geometrical properties of sheet-like thermal plumes in horizontal slices through the bulk flow. Zhou and Xia [11] conducted experiments showing that the skewness of the temperature signal can be taken to separate the flow field into three regions: bulk, boundary and mixing layers.
机译:湍流瑞利奔(RB)对流是流体力学中的经典问题之一,其中具有Prandtl Number Pr = V / K的流体暴露于垂直温度梯度,在热下部和冷的上表面之间。 Rayleigh Number Ra =αGh〜3Δt/(Vk)是指定浮力和粘性力之间的比率,其中α,v和κ分别表示热膨胀系数,运动粘度和热扩散性。 ΔT是两个边界表面之间的垂直温度梯度,流体层的高度和G引力加速度。对于足够高的Ra,从相应的热和冷表面上升和落下的热羽毛变得越来越不规则。近年来,许多基本研究涉及瑞利奔都问题,以便更深入地了解驾驶对流流动和热传输的底层机制。 Verzicco和Sreenivasan [10]研究了等温和恒温通量底板在圆柱形几何形状上的影响,以瑞利数量高达10〜(13)。他们得出结论,具有恒定热通量边界的热羽毛的不稳定喷射更接近实验条件。然而,热羽毛是在热对流场中引起了很多关注的主题区域。 Shishkina和Wagner [9]还在圆柱形几何形状中进行了直接数值模拟(DNS),并通过散装流分析了水平切片中的片状热羽毛的几何特性。 Zhou和XIA [11]进行实验,表明可以采用温度信号的偏斜,将流场与三个区域分离成:散装,边界和混合层。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号