首页> 外文会议>Intersociety Energy Conversion Engineering Conference >Example of a prototype lightweight solar array and the three promising technologies it incorporates: Copper indium diselenide (CIS) thin-film photovoltaics, smart mechanisms employing shape memory, and multifunctional structures
【24h】

Example of a prototype lightweight solar array and the three promising technologies it incorporates: Copper indium diselenide (CIS) thin-film photovoltaics, smart mechanisms employing shape memory, and multifunctional structures

机译:原型轻质太阳能阵列的示例和它包含的三种有希望的技术:铜铟inelenide(CIS)薄膜光伏,采用形状记忆的智能机制和多功能结构

获取原文
获取外文期刊封面目录资料

摘要

As the size of spacecraft decreases, the contribution of the power subsystem to the overall spacecraft weight significantly increases. This paper will focus on describing a prototype solar array utilizing three promising technologies to significantly reduce weight, deploy with low shock, and increase packaging efficiency of the solar power system. These technologies are: Copper Indium DiSelenide (CIS) Thin-Film Photovoltaics, Smart Mechanisms Employing Shape Memory, and Multifunctional Structures. Recent advances in shape memory alloy devices, ultralight composites, along with thin-film copper indium diselenide (CIS or CuInSe_2) photovoltaics (PV), have shown the potential of providing solar array systems with overall array specific power of >100 W/kg. This results in solar arrays that are a factor of 5 lighter than the current state-of-the-practice, and a factor of 3 lighter than the state-of-the-art. The synergistic merging of shape memory mechanisms, thin-film PVs, and lightweight structures technologies into an advanced lightweight solar array (LSA) can meet the requirements of the emerging generation of small satellites. This example approach utilizes the development of shape memory deployment fixtures, composite panels, and flexible thin-film PVs based on CIS technology. Suspended within each panel of our prototype is a unique spring system that counteracts thermal expansion mismatch between the CIS blanket and the composite frame. This basic design approach will be used to scale-up to fabricate a 9-panel, 750 Watt protoflight array exceeding 100 W/kg. The array will be exposed to environmental tests including thermal cycling, vibration, dynamic response, and deployment (functional) tests. This effort will qualify the array for use on a future spacecraft. The teaming arrangement for this effort consists of the Defense Advanced Research Projects Agency (DARPA), Air Force Phillips Laboratory, NASA Langley, and Lockheed Martin Astronautics (LMA). LMA will integrate these technologies toward a LSA design that addresses the requirements of future spacecraft. LMA will also be responsible for the fabrication and testing of the system. LMA has developed a large-area (30×30-cm) in-line, sequential CIS manufacturing approach amenable to low-cost PV production. A prototype CIS manufacturing system has been designed and built with compositional uniformity (Cu/In ratio) verified within ±4 atomic percent over a 30×30-cm area. CIS (non-Ga-containing) device efficiencies have been measured by the National Renewable Energy Laboratory (NREL) at 7% on a flexible non-sodium-containing substrate, and 10% on a soda-lime-silica (SLS) glass substrate. Recent CIS effort has included Ga incorporation, with a goal of increasing the cell-level efficiency and modifying the bandgap to reduce module integration losses. Critical elements of the manufacturing capability include the sequential process selection, uniform large-area material deposition, and in situ process control. Details of the process and large-area manufacturing approach are also discussed and results presented.
机译:随着航天器的大小降低,功率子系统对整体航天器重量的贡献显着增加。本文将专注于描述原型太阳能阵列,利用三种有希望的技术来显着减少重量,以低冲击部署,增加太阳能系统的包装效率。这些技术是:铜铟铟(CIS)薄膜光伏,采用形状记忆的智能机制和多功能结构。形状记忆合金装置的最新进展,超级复合材料以及薄膜铜铟纤维烯化剂(CIS或CIS或CIS或CISSE_2)光伏(PV),已经示出了提供具有> 100W / kg的整体阵列特定功率的太阳能阵列系统的可能性。这导致太阳阵列,其比当前练习的5倍,比最先进的练习率较轻,并且3倍。形状记忆机构,薄膜PVS和轻质结构技术进入先进的轻质太阳能阵列(LSA)的协同合并,可以满足新出现的小卫星的要求。该示例性方法利用基于CIS技术的形状记忆展开夹具,复合板和柔性薄膜PVS的开发。在我们的原型的每个面板内悬挂在每个面板中是一个独特的弹簧系统,抵消了CIS毯和复合框架之间的热膨胀不匹配。这种基本的设计方法将用于扩展以制造超过100W / kg的9面板,750瓦的750瓦法图阵列。该阵列将暴露于环境测试,包括热循环,振动,动态响应和部署(功能)测试。这项努力将符合未来航天器使用的阵列。这项努力的组建安排包括国防高级研究项目(DARPA),空军菲利普斯实验室,美国宇航局兰利和洛克希德马丁航天(LMA)。 LMA将这些技术集成到一个解决未来航天器的要求的LSA设计。 LMA还将负责制造和测试系统。 LMA开发了大面积(30×30厘米)的在线,顺序顺式制造方法可用于低成本光伏生产。设计和构成均匀性(Cu / In比率)设计和构建了原型CIS制造系统,在30×30厘米的区域内验证±4原子百分比。通过全国可再生能源实验室(NREL)在柔性非钠的基材上以7%的含量为7%,苏打水 - 二氧化硅(SLS)玻璃基板(SLS)玻璃基板(SLS)玻璃基板上的含量为7%,通过全国可再生能源实验室(NREL)测量。 。最近的CIS努力包括GA Incorporation,目的是提高细胞级效率并修改带隙以减少模块集成损耗。制造能力的关键元件包括顺序过程选择,均匀的大面积材料沉积,以及原位过程控制。还讨论了该过程和大面积制造方法的细节并提出了结果。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号