首页> 外文会议>International Colloquium on Automata, Languages and Programming >Optimal Cryptographic Hardness of Learning Monotone Functions
【24h】

Optimal Cryptographic Hardness of Learning Monotone Functions

机译:学习单调功能的最佳加密硬度

获取原文
获取外文期刊封面目录资料

摘要

A wide range of positive and negative results have been established for learning different classes of Boolean functions from uniformly distributed random examples. However, polynomial-time algorithms have thus far been obtained almost exclusively for various classes of monotone functions, while the computational hardness results obtained to date have all been for various classes of general (nonmonotone) functions. Motivated by this disparity between known positive results (for monotone functions) and negative results (for nonmonotone functions), we establish strong computational limitations on the efficient learnability of various classes of monotone functions. We give several such hardness results which are provably almost optimal since they nearly match known positive results. Some of our results show cryptographic hardness of learning polynomial-size monotone circuits to accuracy only slightly greater than 1/2+1/n{sup}(1/2); this accuracy bound is close to optimal by known positive results (Blum et al., FOCS '98). Other results show that under a plausible cryptographic hardness assumption, a class of constant-depth, sub-polynomial-size circuits computing monotone functions is hard to learn; this result is close to optimal in terms of the circuit size parameter by known positive results as well (Servedio, Information and Computation '04). Our main tool is a complexity-theoretic approach to hardness amplification via noise sensitivity of monotone functions that was pioneered by O'Donnell (JCSS '04).
机译:已经建立了广泛的正面和负面结果,用于从统一分布的随机示例学习不同类别的布尔函数。然而,到目前为止,几乎仅针对各种类别函数获得多项式 - 时间算法,而迄今为止的计算硬度结果一直是各种一般(非单调的)函数。通过在已知的阳性结果(用于单调函数)和负结果(对于非单调函数)之间的这种差异激励,我们对各种单调函数的有效可读性建立了强大的计算限制。我们给出了几种这样的硬度结果,因为它们几乎匹配了已知的积极结果以来几乎最佳。我们的一些结果显示了学习多项式单调电路的加密硬度,以精确略高于1/2 + 1 / n {sup}(1/2);这种精度约束接近已知的阳性结果(Blum等,Focs'98)。其他结果表明,在合理的加密硬度假设下,一类恒定深度,亚多项式电路计算单调功能很难学习;通过已知的正结果(Servedio,信息和计算'04),该结果在电路尺寸参数方面接近最佳。我们的主要工具是通过O'Donnell(JCSS '04)开创的单调函数的噪声敏感性的硬度放大的复杂性 - 理论方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号